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Preface

This volume is the collection of papers and abstracts of the Third Annual Inter-
national Workshop on the Emergence and Evolution of Linguistic Communica-
tion (EELCIII), held in Rome from September 30 to October 1, 2006. This work-
shop was the third in line after previous editions held in Kanazawa (Japan) in
2004 and in Hatfield (UK) in 2005. Although the previous events were published
as post-proceedings, this event was the first to have its proceedings published
at the workshop. Three types of papers were elicited: full papers, invited full
papers and invited abstracts. All full papers were peer-reviewed by the Interna-
tional Programme Committee.

The workshop’s focus was on the evolution and emergence of language. This is
a fast-growing interdisciplinary research area with researchers coming from dis-
ciplines such as anthropology, linguistics, psychology, primatology, neuroscience,
cognitive science and computer science. Although most papers focus on evolu-
tion, a number of papers focus more on language acquisition. This was highly
welcomed, since research on language acquisition (both from psychology and
artificial intelligence) is extremely important in gaining insights regarding lan-
guage evolution and, not least, regarding the theme of this workshop ‘Symbol
Grounding and Beyond.’

Despite the interdisciplinarity of the field and – in principle – of the EELC
series, most contributions stem from computer science (mainly artificial intelli-
gence and artificial life). This is not surprising, because this was also the case
in previous workshops and because this workshop was part of the ‘Simulation of
Adaptive Behavior’ conference (SAB 2006), a.k.a. ‘From Animals to Animats.’

We would like to thank those involved in the organisation of SAB 2006,
especially Stefano Nolfi, for their assistance in organising the workshop, the
members of the Programme Committee for their assistance in reviewing the
papers, the invited speakers (Peter Gärdenfors, Naoto Iwahashi, Elena Lieven,
Deb Roy and Luc Steels) and, of course, all authors of the contributions in this
collection.

June 2006 Paul Vogt
Yuuya Sugita

Elio Tuci
Chrystopher Nehaniv
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Elio Tuci (Université Libre de Bruxelles, Belgium)
Paul Vogt (Tilburg University, The Netherlands)



Table of Contents

A Hybrid Model for Learning Word-Meaning Mappings . . . . . . . . . . . . . . . . 1
Federico Divina, Paul Vogt

Cooperation, Conceptual Spaces and the Evolution of Semantics . . . . . . . . 16
Peter Gärdenfors, Massimo Warglien

Cross-Situational Learning: A Mathematical Approach . . . . . . . . . . . . . . . . . 31
Kenny Smith, Andrew D.M. Smith, Richard A. Blythe, Paul Vogt

Dialog Strategy Acquisition and Its Evaluation for Efficient Learning
of Word Meanings by Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Ryo Taguchi, Kouichi Katsurada, Tsuneo Nitta

Evolving Distributed Representations for Language with Self-Organizing
Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Simon D. Levy, Simon Kirby

How Do Children Develop Syntactic Representations from What They
Hear? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Elena Lieven

How Grammar Emerges to Dampen Combinatorial Search in Parsing . . . . 76
Luc Steels, Pieter Wellens

Implementation of Biases Observed in Children’s Language
Development into Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Ryo Taguchi, Masashi Kimura, Shuji Shinohara, Kouichi Katsurada,
Tsuneo Nitta

Lexicon Convergence in a Population With and Without
Metacommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Zoran Macura, Jonathan Ginzburg

Operational Aspects of the Evolved Signalling Behaviour in a Group
of Cooperating and Communicating Robots . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Elio Tuci, Christos Ampatzis, Federico Vicentini, Marco Dorigo

Propositional Logic Syntax Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Josefina Sierra-Santibáñez
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A Hybrid Model for Learning Word-Meaning
Mappings�

Federico Divina1 and Paul Vogt1,2

1 Induction of Linguistic Knowledge / Language and Information Science
Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

2 Language Evolution and Computation Research Unit, School of Philosophy,
Psychology and Language Sciences, University of Edinburgh, UK

{f.divina@uvt.nl, paulv}@ling.ed.ac.uk

Abstract. In this paper we introduce a model for the simulation of lan-
guage evolution, which is incorporated in the New Ties project. The New
Ties project aims at evolving a cultural society by integrating evolution-
ary, individual and social learning in large scale multi-agent simulations.
The model presented here introduces a novel implementation of language
games, which allows agents to communicate in a more natural way than
with most other existing implementations of language games. In par-
ticular, we propose a hybrid mechanism that combines cross-situational
learning techniques with more informed feedback mechanisms. In our
study we focus our attention on dealing with referential indeterminacy
after joint attention has been established and on whether the current
model can deal with larger populations than previous studies involving
cross-situational learning. Simulations show that the proposed model can
indeed lead to coherent languages in a quasi realistic world environment
with larger populations.

1 Introduction

For language to evolve, the language has to be transmitted reliably among the
population, which is only possible if the individual agents can learn the language.
In human societies, children have to learn for instance the sounds, words and
grammar of the target language. In the current paper, we focus solely on the
evolution and acquisition of word-meaning mappings. The way children acquire
the meanings of words still remains an open question. Associating the correct
meaning to a word is extremely complicated, as a word may potentially have an
infinite number of meanings [1].

Different mechanisms that children may adopt when acquiring the meanings of
words have been suggested, see, e.g., [2] for an overview. For example, Tomasello
has proposed that joint attention is a primary mechanism [3]. According to this

� This research and the New Ties project is supported by an EC FET grant under
contract 003752. We thank all members the New Ties project for their invaluable
contributions. Opinions and errors in this manuscript are the authors’ responsibility,
they do not necessarily reflect those of the EC or other New Ties members.

P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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mechanism, children are able to share their attention with adults on objects, e.g.,
through gaze following or pointing. Moreover, children can learn that adults have
control over their perceptions and that they can choose to attend to particular
objects or aspects of a given situation. This allows children to focus their atten-
tion on the same situation experienced by adults, thus reducing the number of
possible meanings of a word.

This mechanism, however, is not sufficient, because it is still uncertain whether
a word relates to the whole situation, to parts of the situation or even to a
completely different situation. This is known as the referential indeterminacy
problem illustrated by Quine [1] with the following example: Imagine an anthro-
pologist studying a native speaker of an unfamiliar language. As a rabbit crosses
their visual field, the native speaker says “gavagai” and the anthropologist infers
that “gavagai” means rabbit. However, the anthropologist cannot be completely
sure of his inference. In fact, the word “gavagai” can have an infinite number
of possible meanings, including undetached rabbit parts, large ears, it’s running,
good food or even it’s going to rain.

To overcome this problem, additional mechanisms have been proposed to re-
duce the referential indeterminacy. Among these is a representational bias known
as the whole object bias [4], according to which children tend to map novel words
to whole objects, rather then to parts of objects. Another mechanism that chil-
dren appear to use is the principle of contrast [5], which is based on the assump-
tion that if a meaning is already associated with a word, it is unlikely that it
can be associated with another word.

There is also evidence that children can acquire the meanings of words more
directly by reducing the number of potential meanings of words across different
situations [6,7]. This cross-situational learning can work statistically by main-
taining the co-occurrence frequencies of words with their possible meanings [8,9]
or simply by maintaining the intersection of all situations in which a word is
used [10,11]. Crucially, cross-situational learning depends on observing a suf-
ficient degree of one-to-one mappings between words and meanings. Although
theoretically, the level of uncertainty (i.e. the number of confounding – or back-
ground – meanings) in situations may be quite large, this may have a large
impact on the time required to learn a language [11].

Cross-situational learning yields poor results when the input language is less
consistent regarding the one-to-one mapping. This has been found in simulation
studies of language evolution with increased population sizes [9]. In such simula-
tions, different agents create many different words expressing the same meaning
when they have not yet communicated with each other. So, the more agents there
are, the more words can enter a language community during the early stages of
evolution. In models that use explicit meaning transfer, there are positive feed-
back loops that reduce the number of words sufficiently over time, allowing the
language to converge properly [12]. However, when there is no positive feedback
loop, as is the case with cross-situational learning, there appears to be no efficient
mechanism for reducing the number of words in the language. A possible solution
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to this problem could be to include an additional mechanism that imposes a bias
toward one-to-one mappings between words and meanings [13].

In this paper we propose a hybrid model for the evolution of language that
combines joint attention, cross-situational learning and the principle of contrast
as mechanisms for reducing the referential indeterminacy. In addition, a feedback
mechanism and related adaptations are used as a synonymy damping mechanism.
This model is used to investigate the effect that context size has on the develop-
ment of language, but more importantly it is used to investigate how this model
can deal with large populations. The model is embedded in the New Ties project1,
which aims at developing a benchmark platform for studying the evolution and
development of cultural societies in very large multi-agent systems [14].

The paper is organised as follows: in the next section, we provide a brief
description of the proposed model (for details, consult [14,15]). In Section 3 we
present some experiments, whose aims are to show that the proposed hybrid
model can lead to the evolution of a coherent lexicon in large population sizes
and with varying context sizes. The results are discussed in Section 4. Finally,
Section 5 concludes.

2 The Model

2.1 New Ties Agent Architecture

The New Ties project aims at developing a platform for studying the evolution
and development of cultural societies in a very large multi-agent system. In this
system, agents are inserted in an environment consisting of a grid world in which
each point is a location. The world, which is inspired by Epstein & Axtell’s [16]
sugar scape world, is set up with tokens, edible plants, building bricks, agents,
different terrains of varying roughness, etc. The aim for the agents is to evolve
and learn behavioural skills in order for the society to survive over extended
periods of time. As part of these skills, language and culture are to develop.

At each time step each agent receives as input a set of perceptual features
and messages, which constitute the context of an agent, and outputs an action
(see Fig. 1 for the basic agent architecture). These actions are collected by the
environment manager, and when all agents have been processed, the collected
actions are executed and the environment is updated.

The perceptual features an agent receives represent both objects and actions
that occur in its visual field. These features are processed with a categorisation
mechanism based on the discrimination game [17] (a detailed description of this
mechanism is given in [14,18]). Basically, each object is mapped onto a set of cat-
egories, where each category corresponds to a feature. So, if an object is described
by n features, it will be categorised into n categories. Messages are processed with
a language interpretation module, described in Section 2.2, and also yield a set of
categories. All these categories are stored in the short-term memory (STM), which
can be accessed by the control module, as well as all other modules.
1 New Ties stands for New Emerging World models Through Individual, Evolutionary

and Social learning. See http://www.new-ties.org
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Categorisation
Module

Language
Production
Module

STM

LTMModule
Control

Language
Interpretation
Module

Actions Messages

input
Perceptual

Messages

Fig. 1. The basic architecture of a New Ties agent. Perceptual features of objects and
actions are processed by the categorisation module, while messages are interpreted
with the language interpretation module. The control module outputs actions and the
language production module produces outgoing messages. Various sources of knowledge
are stored in the short- and long-term memories.

Once the perceptual features and messages have been processed, the controller
is used to determine the action to perform. This controller is represented by a
decision Q-tree (DQT), which is a decision tree that can change during an agent’s
lifetime using reinforcement learning [14]. The possible actions include, among
others, move, turn left, turn right, mate, talk, shout, . . . In case the output of
the DQT is either the talk or shout action, the agent must produce a message,
which is done by the language production module, described below. Each action
performed costs a certain amount of energy, and when an agent’s energy level
decreases to zero or below, it dies. Energy levels can be increased by eating
plants. Agents also die when they reach a predefined age.

Agents start their life with a small initial DQT, which, as mentioned above,
can be changed by reinforcement learning. This initial DQT is the result of
evolution. When two agents reproduce, they produce an offspring who inherits
its genome from its parents, subject to cross-over and mutations. This genome
carries the code for producing the initial DQT and other biases, which regulate,
for instance, the ‘socialness’ of the agent. This socialness gene is a bias for
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m1 . . . mN

w1 σ11 . . . σ1N

...
...

...
...

wM σM1 . . . σMN

m1 . . . mN

w1 P11 . . . P1N

...
...

...
...

wM PM1 . . . PMN

Fig. 2. A simplified illustration of the lexicon. The lexicon consists of two matrices
that associate meanings mj with words wi. The left matrix stores association scores
σij and the right matrix stores co-occurrence probabilities Pij .

an agent to be social; the more social an agent is, the more frequently it will
communicate and the more likely it is to provide more information regarding the
meaning of a message. Unlike standard evolutionary algorithms, reproduction is
not processed cyclical, but acyclical, i.e., two agents can reproduce when they
decide to, but only if they are of different sex and in nearby locations.

2.2 Communication and Learning Word-Meaning Mappings

The language evolves in the societyby agents’ interacting through language games.
While doing so, each individual constructs its own lexicon, which is represented in
the long-term memory (LTM) by two association matrices (Fig. 2). Each matrix
associates words wi with meanings mj . The first matrix stores association scores
σij , while the second stores co-occurrence probabilities Pij . The former is updated
based on feedback the agents may receive regarding the effectiveness (or success)
of their interaction. However, as this feedback is not always available, the agents
also maintain the co-occurrence frequencies of words and the potential meanings
as they co-occur in a given situation (or context). The two matrices are coupled
via the association strength, strLij , which is calculated as:

strLij = σij + (1 − σij)Pij . (1)

This coupling allows the agents to infer the right word-meaning mappings
across different situations using the co-occurrence probabilities when there has
been little feedback. However, when there has been sufficient feedback on the
language use of the agents, the association score σij may become high enough
to overrule the co-occurrence probabilities.

Both matrices are updated after each language game. If a language game is
considered successful based on the feedback mechanism, the association score
σij of the used association is increased by

σij = η · σij + 1 − η, (2)

where η = 0.9 is a constant learning parameter. In addition, the scores of com-
peting associations are laterally inhibited by

σij = η · σij . (3)
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An association αnm is competing if either the word is the same (n = i) or the
meaning (m = j), but not both. If the game has failed according to the feedback
mechanism, σij is also decreased this way. The association score is unchanged if
no feedback is processed.

In each game, irrespective of its outcome, the co-occurrence frequencies fij of
words with potential meanings in that situation are increased, thus affecting the
co-occurrence probabilities:

Pij =
fij∑
i fij

. (4)

The reason for adopting this dual representation is that earlier studies have
indicated that using the mechanism for updating the association scores (Eqs. 2
and 3) work much better than for updating the co-occurrence probabilities (Eq.
4) if there is feedback, while the opposite is true for cross-situational learning [19].

Unlike standard implementations, such as [17,18], a language game is initiated
by an agent when its controller decides to talk or shout2, or otherwise with a
certain probability proportional to socialness gene. This agent (the speaker) then
selects an arbitrary object from its context as a target object3 and decides on
how many words it will use to describe the object. This number, expressed in the
task complexity Tc, is determined by generating a random number between 1 and
5 following a Gaussian distribution with the average age of the target audience
in tens of ‘New Ties years’ (NTYrs)4 as its mean and a standard deviation of
0.75. This way, the agent will tend to produce shorter messages when addressing
a young audience and longer messages when addressing an older audience.

Depending on this task complexity, the agent selects arbitrarily Tc different
categories that represent the object. Recall that each category relates to one
perceptual feature of an object, such as the object’s colour, shape, distance or
weight. For each category, the speaker then searches its lexicon for associations
that have the highest strength strLij . If no such association is found, a new
word is invented as an arbitrary string and added to the lexicon. Each word
thus found is then appended to the message which is distributed to the agent(s)
in the speaker’s vicinity.

On certain occasions, for instance, when the hearer had signalled that it did not
understand the speaker, the speaker may accompany the message with a pointing
gesture to draw the attention to the target (such a gesture is only produced with a
probability proportional to the socialness gene mentioned earlier). This way, the
agents establish joint attention, but still the hearer does not necessarily know ex-
actly what feature of the object is signalled (cf. Quine’s problem).

2 The ‘talk’ action is directed to only one visible agent, while ‘shout’ is directed to all
agents in the audible vicinity of the initiator.

3 In later studies we intend to make this selection depending on the decision making
mechanism determined by the DQT, so the communication will be more functional
with respect to the agent’s behaviour.

4 In the current paper, a year in ‘New Ties time’ equals to an unrealistic 365 time
steps.
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When an agent receives a message, its language interpretation module tries to
interpret each word in the message by searching its lexicon for associations with
the highest strength strLij . If the association score σij of this element exceeds
a certain threshold (i.e., σij > Θ, where Θ = 0.8), then the hearer assumes the
interpretation to be correct. If not, the hearer may – with a certain probability
proportional to the socialness gene – consider the interpretation to be incorrect
and signal a ‘did not understand’ message, thus soliciting a pointing gesture;
otherwise, the hearer will assume the interpretation was correct.

In case the interpretation was correct, the hearer may – again with a probabil-
ity proportional to its socialness gene – signal the speaker that it understood the
message, thus providing feedback so that both agents increase the association
score of used lexical entries and inhibit competing elements as explained above.
In all cases, the co-occurrence probability Pij is increased for all categories in the
context that have an association with the expressed words. In case the speaker
had pointed to the object, this context is reduced to the perceptual features of
this object. Otherwise, the context contains all categories of all visible objects,
which may differ from those the speaker sees – including the target object. All
interpretations are added to the STM, which the controller uses to decide on the
agent’s next action.

When no interpretation could be found in the lexicon, the agent adds the novel
word to its lexicon in association with all categories valid in the current context
(i.e., either all objects and events perceived or the object that was pointed to).
The frequency counters of these associations are set to 1 and the association
scores σNj are initialised with:

σNj = (1 − max
i

(σij))σ0, (5)

where maxi(σij) is the maximum association score that meaning mj has with
other words wi, σ0 = 0.1 is a constant, and i �= N . This way, if the agent has
already associated the meaning (or category) mj with another word wi, the agent
is biased to prefer another meaning with this novel word. Hence, this implements
a notion of the principle of contrast [5]. Note again that the hearer may not have
seen the target object and thus may fail to acquire the proper meaning.

3 Experiments

In the experiments we test the effectiveness of the model described in the pre-
vious section. In particular, we are interested to see whether reasonable levels
of communicative accuracy can be reached with relatively large populations. In
addition, we investigate the influence of considering a different number of percep-
tual features that agents have at their disposal for inferring word-meaning map-
pings. In order to focus on these questions, the evolutionary and reinforcement
learning mechanisms were switched off. So, although agents could reproduce,
each agent has exactly the same hand-crafted controller that did not change
during their lifetimes. As a result, in the simulations reported here, agents only
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move, eat, reproduce (with no evolutionary computation involved) and commu-
nicate with each other. When an agent’s energy level decreased below zero, they
died. The same happens when agents reach a certain age (set at 80 ‘New Ties
years’, i.e. 29,200 time steps).

We performed a set of experiments in which we varied the number of features
considered for each object, from a minimum of 2 to a maximum of 10 features.
Varying the number of features has an influence on the number of possible mean-
ings in the language. The following table indicates how many meanings there are
for the different number of features available:

No. of features 2 3 4 5 6 7 8 9 10
No. of meanings 10 16 19 23 26 35 40 45 48

Remember that a category relates to one feature, so the more features are
used to describe an object, the more possible meanings can be associated to a
word. Effectively, increasing the number of features increases the context sizes. A
recent mathematical model describing cross-situational learning [11] shows that
learning word-meaning mappings is harder when the context size is larger. So,
we expect that considering a higher number of features will lead to the evolution
of a lower level in communicative accuracy, or to a slower learning rate.

In addition to reducing the number of features, referential indeterminacy can
be reduced by means of pointing. As mentioned, the probability with which
agents point is proportional to the socialness gene. As the evolutionary mecha-
nisms are switched off in these experiments, the socialness gene is now initialised
individually with a random value.

The initial population size is set to 100 agents. When the agents reach the age
of 10 NTYrs (3,650 time steps), they start to reproduce. So, from then onward
the population size can grow, though this may not happen if the agents tend to
die faster than they reproduce.

Recall that all agents are evaluated once during each time step. So, during one
time step, multiple language games can be played by different agents. Moreover,
different agents can speak to one another simultaneously, as they do not wait
for their turn. Playing one language game takes 2-3 time steps: (1) sending a
message, (2) receiving a message, occasionally, (3) signalling feedback and (4)
receiving feedback.

The simulations are evaluated based on communicative accuracy. Commu-
nicative accuracy is calculated each 30 time steps by dividing the total number
of successful language games by the total number of language games played
during this period. A language game is considered successful if the hearer inter-
preted the message from the speaker such that the interpreted category exactly
matched the intended category (so not the object). Simulations were repeated
5 times with different random seeds for each condition and the results reported
are averages over these 5 trials.

Figure 3 (top) shows communicative accuracy for the cases with 2, 6 and 10
features. In all cases, accuracy increased to a level between 0.50 (10 features) and
0.68 (2 features) during the first 30 time steps. After this, accuracy first increased
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Fig. 3. (Top) The evolution of communicative accuracy (y-axis) over time (x-axis) for
the conditions with 2, 6 and 10 features. Notice the odd scale on the y-axis. (Bottom)
Communicative accuracy measured at the end of each simulation, averaged over the
5 trials with their standard deviation. The results relate to the number of perceptual
features varied from 2 to 10 with incremental steps (x-axis).

quite rapidly and then stagnated more or less around 0.57 (10 features), 0.60 (6
features) and 0.73 (2 features). Although the language is not learnt perfectly in
any condition, accuracy is reasonable and much better than chance. For instance,
in the case where there are 6 features, chance is between 1/26 (if all possible
meanings are in the context – cf. above mentioned table) and 1/6 (if the target
object was pointed to).

For comparison, we tested the model in a simulation where pointing was
used to explicitly transfer the intended meaning (i.e. categories) – at least in
those interactions where pointing was used. Under this condition, communicative
accuracy yielded on average 0.97±0.02 at the end of the simulations.

It is clear that the levels of communicative accuracy decreased when the number
of features increased up to 6 or 7 features, after which there is no more significant
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change (Fig. 3 bottom). Although differences between subsequent numbers of fea-
tures are not significant, the difference between using 2 features and 7 features is.
This is consistent with our prediction mentioned earlier and also with the findings
from the mathematical model [11]. However, in the mathematical model all word-
meaning mappings could be learnt perfectly, but at the expense of longer learning
periods for larger context sizes (i.e. more features).

It is not yet fully understood why there is no more significant change for
variation from 6 to 10 features. One explanation could be that when there are
more than 6 perceptual features, it no longer holds that all objects are described
by every feature, because some features (e.g., shape and colour) are shared by
all objects, while others (e.g., sex) only by some objects.
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Fig. 4. The evolution of the average population size for the case with 6 features. All
other simulations revealed a similar evolution.

Figure 4 shows the evolution of the average population size in the simulations
with 6 features. We see that the first 3,650 time steps (10 NTYrs), the population
size remains constant at 100 agents. This is because during this period, agents
only start reproducing when they reached an age of 10 NTYrs. We then see a
rapid increase of the population size to 110 agent, after which the population
size somewhat fluctuates until it eventually slowly decreases, though the total
number remains larger than 100. The decrease is due to the fact that giving birth
costs a large amount of energy, which is passed on to the offspring. So agents
who are less fit will have a large chance of dying after giving birth. The issue
here is that these changes in the population do not seem to alter the evolution of
accuracy a lot, though around the points where there is a large inflow or outflow
of agents, this does seem to have some effect. This is consistent with findings
from earlier simulations on language evolution, e.g., [20].

It is important to stress that these experiments are different from those fo-
cusing only on cross-situational learning as in [8,9,11]. In those experiments,
cross-situational learning was the only learning mechanism. In these experiments,
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feedback regarding a game’s success is provided in approximately 12% of the lan-
guage games, while messages were accompanied with a pointing gesture in about
42% of all games. Note that one game can have both a pointing gesture and feed-
back, so none were used in an estimated 50%. Per time step, approximately 27%
of all agents initiated a language game, so assuming that the population size was
on average 105 over the entire period of the experiment, a total of approximately
1 million language games were played at the end of the experiments.

4 Discussion

In this paper we investigate some aspects of learning word-meaning mappings
regarding Quine’s problem of referential indeterminacy. In particular, we are
interested in how agents can evolve a shared lexicon regarding various charac-
teristics of objects without using explicit meaning transfer. Although agents do
not always point to target objects, but when it happens, hearers still cannot
determine exactly what characteristics (or features) of objects are intended by
the speaker. Our proposed solution is to use cross-situational learning for such
instances. However, as this learning mechanism has proved to be relatively slow
and difficult to scale up in terms of population size [9], we combined this method
with learning techniques based on positive feedback and the principle of contrast.

The results achieved with this model are reasonable. The population can de-
velop a communication system with an accuracy of about 50-70% quite rapidly,
while further improvement on accuracy is somewhat slower yielding levels of
accuracy between 60-75% at the end of the simulations. The initial speed of
learning seems very fast, but one has to realise that the agents do not commu-
nicate with all other agents. Instead, the only communicate with agents within
their vicinity. In the current setting, there were groups of around 3-4 agents quite
near to each other. So, although the population is larger than in any previous
study using cross-situational learning, it will take a long time before all agents
would have communicated with many different agents. It is unclear in the cur-
rent simulations what the reach of an agent was (i.e. the number of different
agents it communicated with).

The stagnation of communicative accuracy is thought to be caused by – at
least – three aspects: 1) the influx of new agents, 2) the increase of task complex-
ity and 3) mismatches in perceived contexts by different agents participating in
a language game. The first two aspects start to have an influence at time step
3,650 – the time that the first agents reach an age of 10 NTYrs. This is around
the same period where the stagnation starts to occur. The third aspect is caused
by the ‘situatedness’ of the agents in their environment, because two agents can-
not be at the same location simultaneously, and also because their orientation
can be quite different (see [21] for a discussion). Furthermore, if an object is
obscured by another one for a particular agent, this need not be the case for
another agent. If the other agent already learnt the meaning of this word reli-
ably, there is no problem, but otherwise the hearer will assume the word means
something that he sees. This can be problematic for cross-situational learning,
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which heavily depends on consistent and reliable input [9]. Despite all this, the
agents perform well beyond chance. In the future, we will assess in more detail
what the exact effects of these aspects are.

The latter aspect can partly be solved using pointing, though – as mentioned –
this only occurred on average in about 42% of all interactions. Pointing gestures
can be initiated spontaneously by the speaker with a certain probability, but can
also be solicited by the hearers when they send a negative feedback signal. In such
cases, the context is reduced to the number of perceptual features of one object,
which equals 2 in the simplest case investigated and 10 in the most difficult case.
Since the language games will fail frequently early on, many negative feedback
signals are sent, in which case the speaker is likely to repeat the message, but
now accompanied by a pointing gesture. This way, agents can engage in a sort
of ‘dialogue’, where the speaker repeats himself to make himself understood if
requested by the hearer.

It must be stressed that the success is probably only partly due to the cross-
situational learning. It is, to some extent, also due to the positive feedback that
is provided when the hearer considers the language game to be successful. Re-
call that feedback is provided when the association score σij exceeds a certain
threshold Θ or – if this is not the case – with a probability that is inversely pro-
portional to the value of socialness gene (which was assigned randomly in the
current simulations). During the early stages of word learning, we can only ex-
pect the latter case to hold, so when through cross-situational learning a hearer
has selected one possible interpretation, the association score σij is reinforced
occasionally. This association needs to be reinforced 16 times before the associa-
tion score exceeds the threshold, which is set to Θ = 0.8. Until then, the agents
rely on cross-situational learning, accompanied by occasional ‘blind’ adaptations
of the association scores σij . This is, then, similar to the synonymy damping
mechanism proposed in [13], which has a positive effect on disambiguating the
language during cross-situational learning.

In [22], we investigated the role of feedback in a related model simulating
the Talking Heads experiment. There it was found that only when feedback
was used frequently enough, the results were better than when feedback was not
used at all (i.e. when the learners could only rely on a variant of cross-situational
learning). However, in those simulations feedback forced the speaker to point at
the object and, since in those simulations objects were represented by only one
category, pointing identified the target meaning more precisely. We are currently
investigating more thoroughly what the role of feedback is in this model.

It is also important to realise that the language is relatively small. In case
there are 2 features, an agent has only 10 categories, but in case of 10 features
an agent has a total of 48 categories. Although learning individual words can take
longer when there are less meanings (because it can take longer before distracting
meanings no longer compete), this does not hold for the entire language, provided
the context size is substantially smaller than the total number of meanings [11].
So, the smaller the language, the easier it should be learnt.



A Hybrid Model for Learning Word-Meaning Mappings 13

It is yet unclear what the influence of the principle of contrast is in this model,
because we did not compare these results with a simulation where the principle
of contrast was switched off. This will be carried out in future experiments. It
is interesting to note, however, that we implemented the principle of contrast
as a loose bias, rather than as a strong principle that would rule out competing
word-meaning mappings entirely.

One may wonder why this particular study is carried out in a complex envi-
ronment as the current one, while a similar study could have been carried out in
a much more simpler simulation setting. We agree this is true, but it is impor-
tant to realise that this is the first in a series of experiments being set up in the
New Ties project. There are many more planned; some of which may indeed be
done using a simpler set up (e.g., for investigating the effect of the principle of
contrast), but most will relate to the evolution of more complex behaviours that
would allow the population to remain viable over extended periods of time. Such
experiments will involve various combinations of learning mechanisms to allow
the population to evolve and learn how to behave properly in their complex en-
vironment. These learning mechanisms include evolutionary learning, individual
(reinforcement) learning and social learning. Especially the latter is of interest,
because we intend to set up experiments in which the language that evolves will
be used to share information concerning the way the controller is structured,
thus allowing agents to copy such structures in order to acquire more similar
controllers.

5 Conclusions

In this paper we have presented a new hybrid model for the simulation of lan-
guage evolution, and in particular the evolution of shared lexicons. This model
is incorporated in the New Ties project, whose aim is to set up large scale sim-
ulations to study the evolution of cultural societies by combining evolutionary,
individual and social learning techniques.

Using the model we show how a combination of different learning mechanisms,
which include pointing as a means of establishing joint attention, the principle
of contrast, a positive feedback mechanism and cross-situation learning allow
agents to infer the meaning of words. In particular, we show that this model can
– in contrast to previous studies [9] – deal well with relatively large populations.
One reason for this ability is that the feedback mechanism acts as a synonymy
damping mechanism, similar to a recent study by De Beule et al. [13].

The study further shows that the model is quite robust (but definitely not
perfect) when agents need to infer the meaning when there is more referential
indeterminacy, though learning is somewhat hampered in terms of communica-
tive accuracy. Indirectly, this confirms another recent study by Smith et al. [11],
who mathematically proved that cross-situational learning can work well with
different levels of referential indeterminacy, though the learning speed is affected
such that higher levels of indeterminacy require longer learning periods. The dif-
ference with the current study is that in the mathematical study language can
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be learnt with 100% accuracy, but under the assumption that an ideal language
exists which needs to be learnt by one individual who receives consistent input.
In the current simulation, such assumptions do not hold.

As one of the objectives of the New Ties project is to set up a benchmark
platform for studying the evolution of cultural societies, which includes the evo-
lution of language, we believe this study is a first promising step showing what
sort of studies can be carried out with this platform.
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Abstract. We start by providing an evolutionary scenario for the emergence of 
semantics. It is argued that the evolution of anticipatory cognition and theory of 
mind in the hominids opened up for cooperation about future goals. This coop-
eration requires symbolic communication. The meanings of the symbols are  
established via a “meeting of minds.” The concepts in the minds of communi-
cating individuals are modelled as convex regions in conceptual spaces. We 
then outline a mathematical framework based on fixpoints in continuous map-
pings between conceptual spaces that can be used to model such a semantics. 

1   Communication and Meaning: An Evolutionary Perspective 

When communication first appears, it is the communicative act in itself and the con-
text it occurs in that is most important, not the expressive form of the act [1]. As a 
consequence, the pragmatic aspects of language are the most fundamental from an 
evolutionary point of view. When communicative acts (later speech acts) in due time 
become more varied and eventually conventionalized and their contents become de-
tached from the immediate context, one can start analyzing the different meanings of 
the acts. Then semantic considerations become salient. Finally, when linguistic com-
munication becomes even more conventionalized and combinatorially richer, certain 
markers, a.k.a. syntax, are used to disambiguate the communicative contents when the 
context is not sufficient to do so. Thus syntax is required only for the subtlest aspects 
of communication – pragmatic and semantic features are more fundamental.  

This view on the evolutionary order of different linguistic functions stands in sharp 
contrast to mainstream contemporary linguistics. For followers of the Chomskian 
school, syntax is the primary study object of linguistics; semantic features are added 
when grammar is not enough; and pragmatics is a wastebasket for what is left over 
(context, deixis, etc). However, we believe that when the goal is to develop a theory 
of the evolution of communication, the converse order – pragmatics before semantics 
before syntax – is more appropriate. In other words, there is much to find out about 
the evolution of communication, before we can understand the evolution of semantics, 
let alone syntax. 

In support of the position that pragmatics is evolutionarily primary, we want to 
point out that most human cognitive functions had been chiselled out by evolution 
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before the advent of language. We submit that language would not be possible with-
out all these cognitive capacities, in particular having a theory of mind and being able 
to represent future goals (see [2]). This position is not uncontested. Some researchers 
argue that human thinking cannot exist in its full sense without language (e.g. [3]). 
According to this view, the emergence of language is a cause of certain forms of 
thinking, e.g. concept formation.  

However, seeing language as a cause of human thinking is like seeing money as a 
cause of human economics [4, p. 94]. Humans have been trading goods as long as 
they have existed. But when a monetary system does emerge, it makes economic 
transactions more efficient and far reaching. The same applies to language: hominids 
have been communicating long before they had a language, but language makes the 
exchange of meaning more effective. The analogy carries further. When money is 
introduced in a society, a relatively stable system of prices emerges. Similarly, when 
linguistic communication develops, individuals will come to share a relatively stable 
system of meanings, i.e. components in their mental spaces, which communicators 
can exchange between each other. In this way, language fosters a common structure 
of the mental spaces of the individuals in a society. 

Within traditional philosophy of language, a semantics is seen as a mapping be-
tween a language and the world. From an evolutionary perspective, this view has 
severe problems. For one thing, it does not involve the users of the language. In par-
ticular, it does not tell us anything about how individual user can “grasp” the mean-
ings determined by such a mapping [5]. In this article, we want to propose a radically 
different view of the evolution of semantics based on a “meeting of minds.” Accord-
ing to this view, the meanings of expressions do not reside in the world or solely in 
the mental schemes of individual users, but they emerge from the communicative 
interactions between the language users. 

The first part of this paper (sections 2 and 3) presents an evolutionary scenario for 
the emergence of a “socio-cognitive” semantics. We shall argue that the evolution of 
anticipatory cognition and theory of mind in the hominids opened up for cooperation 
about future goals. This cooperation requires symbolic communication. The mean-
ings of the symbols are established via a “meeting of minds.” In the second part of 
the paper (sections 4-6), we outline a mathematical framework based on fixpoints in 
continuous mappings between conceptual spaces that can be used to model such a 
semantics. 

This view on how meanings are established gains additional support from a differ-
ent direction. In a variety of computer simulations and robotic experiments (e.g. [6], 
[7], [8], [9], [10], [11], [12]), it has been shown that a stable communicative system 
can emerge as a result of iterated interactions between artificial agents, even though 
there is nobody who determines any ”rules” for the communication. A general finding 
of the experiments is that the greater number of ”signallers” and ”recipients” involved 
in communication about the same outer world, the stronger is the convergence of the 
reference of the messages that are used and the faster the convergence is attained. 
Still, different ”dialects” in the simulated community often emerge. However, the 
“mental spaces” that have been used for robots in these simulations have, in general, 
been very simplistic and assumed to be identical in structure for all individuals.  
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2   Cooperation for Future Goals 

Language is the solution to certain problems concerning communication. But animals 
communicate without language. So what are the communicative reasons for develop-
ing a more complicated system like human symbolic language? Our answer is that 
humans have a capacity to communicate about their future goals. 

To elaborate this position, we must analyze some of the cognitive prerequisites for 
symbolic language. Bischof [13] and Bischof-Köhler [14] argue that animals other 
than humans cannot anticipate future needs or drive states. Their cognition is there-
fore bound to their present motivational state (see also [15]). This hypothesis, which 
is called the Bischof-Köhler hypothesis [16], is supported by the current evidence 
concerning planning in non-human animals.  

Gulz [15] calls planning for present needs immediate planning while planning for 
the future is called anticipatory planning. Humans can predict that they will be hun-
gry tomorrow and save some food, and we can imagine that the winter will be cold, so 
we start building a shelter already in the summer. There is nothing in the available 
evidence concerning animal planning, notwithstanding all its methodological prob-
lems, which suggests that any other genus than Homo can represent their future de-
sires (the recent results by Mulcahy and Call [17] are not really counterevidence to 
the thesis). The cognition of other animals concerns here and now, while humans are 
mentally both here and in the future.  

Anticipatory planning is a component in a more general anticipatory cognition that 
is a hallmark of Homo sapiens [18]. It also includes episodic memory [19] and other 
aspects of “mental time travel” [16], [20]. A central question is what factors along the 
hominid line have created selective evolutionary forces that have resulted in anticipa-
tory cognition in general (including episodic memory) and anticipatory planning in 
particular (also cf. [21]).  

One answer is provided by Osvath and Gärdenfors [18], who argue that the Oldowan 
culture led to the co-evolution of transport and anticipatory planning. The hominid life 
on the savannah during the Oldowan era opened up for many new forms of cooperation 
for future goals. For example, Plummer [22, p. 139] writes: ”Given that body size often 
predicts rank in the carnivore guild, an individual Homo habilis would likely not have 
fared well in a contest with many of its contemporary carnivores. Competition with 
large carnivores may have favoured cohesive groups and coordinated group movements 
in Homo habilis, cooperative behaviour including group defence, diurnal foraging (as 
many large predators preferentially hunt at night) with both hunting and scavenging 
being practiced as the opportunities arose, and the ability (using stone tools) to rapidly 
dismember large carcasses so as to minimize time spent at death sites.” 

For most forms of cooperation among animals, it seems that mental representations 
are not needed. If the common goal is present in the actual environment, for example 
food to be eaten or an antagonist to be fought, the collaborators need not focus on a 
joint representation of it before acting. If, on the other hand, the goal is distant in time 
or space, then a mutual representation of it must be produced before cooperative ac-
tion can be taken. For example, building a common dwelling requires coordinated 
planning of how to obtain the building material and advanced collaboration in the 
construction. In general terms, cooperation about future goals requires that the mental 
spaces of the individuals be coordinated (or, in some cases, negotiated).  
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3   The Need for Symbols in Communication About Future Goals 

Symbolic language is the primary tool by which humans can make their inner worlds 
known to each other. In previous work [2], [18], [23], [24], it has been proposed that 
there is a strong connection between the evolution of anticipatory cognition and the 
evolution of symbolic communication. In brief, the argument is that symbolic lan-
guage makes it possible to cooperate about future goals in an effective way.  

Language is based on the use of representations as stand-ins for entities, actual or just 
imagined. Use of such representations replaces the use of environmental cues in commu-
nication. If somebody has an idea about a goal she wishes to reach, she can use language 
to communicate her thoughts. In this way, language makes it possible for us to coordinate 
our visions about the future – our minds can meet. The question that has to be answered is 
why symbolic communication is necessary for this kind of communication. 

Tomasello [25, p. 95] defines symbolic communication as the process by which 
“one individual attempts to manipulate the attention of, or to share attention with, 
another individual. In specifically linguistic communication […] this attempt quite 
often involves both (a) reference, or inviting the other to share attention to some out-
side entity (broadly construed), and (b) predication, or directing the other’s attention 
to some currently unshared features or aspects of that entity […].” We cannot fully 
accept this definition. One aspect that is missing in his characterization is that depend-
ing on the character of the “outside entity,” different cognitive demands on the indi-
vidual whose attention is manipulated will be relevant. To understand the differences, 
one must distinguish between (1) entities that are present in the shared environment, 
(2) entities that are not present in time or space but about which there is some com-
mon knowledge, and (3) entities that are unknown to the other individual. Communi-
cation about future goals often involves entities of the third kind. 

Depending on which type of entity is communicated about, different minimal 
forms of communication are required. It becomes very natural to map the three kinds 
of entities to be communicated about to Peirce’s [26] triad of index, icon and symbol:  

(1) If the entity is present, then indexical communication, for example pointing, is 
sufficient. Animal communication consists almost exclusively of signals, referring to 
what is present at the moment in the environment, be it food, danger or a mate. This 
form of communication does not presume that the signaller ascribes any mental repre-
sentation of the communicated object in the mind of the receiver. It is important to 
note that this kind of communication does not require any form of symbolic commu-
nication. (This is another reason we do not fully accept Tomasello’s definition pre-
sented above.) Consequently, as long as all communication concerns present entities, 
there will be no evolutionary pressures for the use of symbols. 

(2) If the communicated entity is not present, direct signalling will not work. If I 
want to refer to a deer that I saw down by the riverside yesterday, merely pointing 
will not help, nor will a call signal. This form of communication clearly requires rep-
resentations that are detached from the present [2]. Iconic miming may establish the 
reference, but only if the signaller and receiver have sufficient common knowledge 
about the indicated entity and there are sufficient cues from previous communication 
or the environment to make it possible for the receiver to identify the object. (This 
would be a case of what is called triadic miming in [27]. When the relevant entity is 
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an action, this form of communication works particularly well. By using icons, one 
agent can show another how to act in order for the two of them to reach a common 
goal. Icons can work as imperatives, urging the agents to “Do like this!” [23].  

(3) The most difficult type of communication concerns novel entities that do not 
yet exist. Collaboration about future, non-existent goals falls within this category. 
Here the signaller can neither rely on common knowledge about the entity, nor on 
cues from the environment. Iconic communication might work in exceptional cases, 
but we submit that it is for this kind of communication that symbols prove their met-
tle. For example, if I have come up with an idea about how to build a new kind of 
defence wall around our camp, it is very difficult to see how this can be communi-
cated by miming alone. In particular, if the communication involves the predication 
of Tomasello’s definition above, that is, directing the other’s attention to some cur-
rently unshared features or aspects of that entity, symbols seem to be crucial. Such a 
predication process will also require the productivity and compositionality of a sym-
bolic system. 

In this characterization we use “symbolic communication” in a basically Peircian 
way, meaning that the act is conventional and breaks up compositionally into mean-
ingful sub-acts that relate systematically to each other and to other similar acts [27], 
[28]. This form of communication is, as far as we know, uniquely human. In this 
context it should be noted that Tomasello’s [25, p. 95] definition of symbolic commu-
nication that was presented above also covers what we call indexical and iconic cases. 

An important feature of the use of symbols in cooperation is that they can set the 
cooperators free from the goals that are available in the present environment. The 
future goals and the means to reach them are picked out and shared through the sym-
bolic communication. This kind of sharing gives humans an enormous advantage 
concerning cooperation in comparison to other species. We view this advantage as a 
strong evolutionary force behind the emergence of symbols. More precisely, we sub-
mit that there has been a co-evolution of cooperation about future goals and symbolic 
communication (cf. the "ratchet effect" discussed in [4], pp. 37-40 and [18]. However, 
without the presence of anticipatory cognition, the selective pressures that resulted in 
symbolic communication would not have emerged. However, once symbolic commu-
nication about future goals has been established, it can be used for other purposes, for 
example, sharing myths and rituals.  

We want to show that this kind of sharing mental representations leads to the emer-
gence of a semantics, that is, a set of shared meanings. In our opinion, semantics can 
be seen as conventionalized pragmatics [29]. One important question then concerns 
how the cognitive structure of the semantic conventions looks like. Here, so called 
cognitive semantics offers a cue to one part of the answer (e.g. [29], [30], [31]). 
According to cognitive semantics, the meanings of words can be represented as “im-
age schemas” in the heads of the communicators. These schemas are abstract mental 
pictures having an inherent spatial structure constructed from elementary topological 
and geometrical structures like “container,” “link” and “source-path-goal.” A common 
assumption is that such schemas constitute the representational form that is common 
to perception, memory, and semantic meaning. 

However, a general problem for such a semantic theory is: if everybody has their 
own mental space, how can we then talk about a representation being the meaning of 
an expression? In other words, how can individual mental representations become 
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conventions? Therefore, the question in focus will be: how can language help us share 
our mental spaces? 

In the computer simulations and robotic experiments performed by Steels and oth-
ers, the typical communicative situation is a ”guessing game” [8] where the signaller, 
by uttering an expression, tries to make the recipient identify a particular object in the 
environment. It should be noted that in such guessing games (as in Wittgenstein's 
language games), the participants are only concerned with finding the appropriate 
referent among those that are present on the scene. In contrast, communication about 
non-present referents, which are in focus here, demands that the communicators have 
more advanced representational capacities. 

4   Semantics as a Meeting of Minds 

Our view on the evolution of symbolic communication puts novel, non-present and 
even fictitious referents in focus. Therefore, a semantic theory that starts from refer-
ence to the world seems unnatural from our perspective. Our task is to develop a se-
mantic theory that fits with the evolutionary account presented above. In our view, the 
semantics does not consist of a mapping from linguistic expressions to an external 
world, but is rather constituted of the individuals’ mental spaces and mappings be-
tween them. In brief, we see semantics as a meeting of the minds and hence we advo-
cate a form of socio-cognitive semantics.  

As a comparison, consider the “cognitive semantics” where image schemas have 
been core carriers of meaning. An image schema is a conceptual structure that be-
longs to a particular individual. However, when the authors within cognitive linguis-
tics write about image schemas, they are often presented as structures that are com-
mon to all speakers of a language. However, in the socio-cognitive type of semantics 
we model in the next section, we do not assume that everybody has the same meaning 
space, but only that there exist well-behaved mappings between the meaning spaces 
of different individual – “well-behaved” in the sense that the mappings have certain 
mathematical properties (to be specified in the following section). As we shall argue, 
semantic equilibria can exist without assuming shared spaces. The semantics will be 
represented by a fixpoint in the mapping between individual mental spaces. 

The fundamental role of communication is to affect the states of mind of others. A 
meeting of the minds means that the representations in the minds of the communica-
tors will become sufficiently compatible so that successful joint action can arise. Thus 
we conceive of semantics as a product of communication – meanings arise as a result 
of communicative interactions. The mental space that generates the meanings for a 
particular individual is partly determined from the individual’s interaction with the 
world, partly from her interaction with others and partly from her interaction with 
herself (e.g. in the form of self-reflection). This view does not entail that different 
individuals mean the same thing by using an expression, only that their communica-
tion is sufficiently successful.  

As a preparation for our analysis of communication about novel and non-present ob-
jects as a basis for semantics, let us consider a theoretical scenario proposed by Freyd 
[32]. The main theme of her paper is that knowledge, by the fact that it is shared in a 
language community, imposes constraints on individual cognitive representations. She 
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argues that the structural properties of individuals’ mental spaces have evolved because 
“they provide for the most efficient sharing of concepts,” and proposes that a dimen-
sional structure with a small number of values on each dimension will be especially 
“shareable.” This process of creating shared meanings is continually ongoing: the in-
terplay between individual and social structures is in eternal co-evolution. The effects 
are magnified when communication takes place between many individuals (cf. the 
simulations by Steels and others). 

The constraints of sharing concepts can be discussed in relation to the image sche-
mas of cognitive semantics. Even if different individuals do not have identical sche-
mas, there are good reasons to assume that they have developed a high degree of 
similarity. One is that since basic image schemas are supposed to represent perceptual 
and other bodily experiences, the very fact that humans have similar constitutions 
makes it likely that our representations are very similar. Another reason is that if the 
image schema corresponding to a particular expression is markedly different for two 
individuals, it is likely that this will lead to problems of communication. A desire for 
successful communication will therefore lead to a gradual alignment among the mem-
bers of a linguistic community of the image schemas.  

Image schemas provide a bridge between a focus on shared meanings and a focus 
on the common shape of underlying conceptual structures that facilitate mutual under-
standing and the successful interaction between possibly different but similarly struc-
tured mental spaces. After all, we can communicate effectively even if we do not 
share the same mental representation. For example, in communication between chil-
dren and adults, children often represent their concepts using fewer dimensions, and 
dimensions that are different from those of the adults. 

Our aim is to model how a common structure in individual mental spaces will en-
sure the existence of a “meeting of minds,” and how semantics may be grounded in 
the formal properties of such interaction.  

5   Meeting of Minds as Fixpoints in Communication Games 

In this section we outline, in rather broad terms, a mathematical framework for se-
mantics as “meeting of the minds”.  

As long as communication is conceived as a process through which the mental 
state of an individual affect the mental state of another one, a “meeting of the minds” 
is a condition in which both individuals find themselves in compatible states of mind 
that do not require further processing. Just like covenants shake hands after reaching 
an agreement on the terms of a contract, speakers may reach a point in which both 
believe they have understood what they are talking about. Of course, they may actu-
ally mean different things, just like the terms of a contract might prove to be inter-
preted differently by the covenants. But it is enough that, in a given moment and a 
given context, speakers may reach a point in which they feel there is a mutual under-
standing – no matter whether mutual agreement implies or not that they mean the 
same thing. 

A very common mathematical way to define such kind of state would be to identify 
it as a fixpoint. A fixpoint x* of a function f(x) is a point in which the function maps 
x* on itself (f(x*) = x*). But what kind of object is a function that reaches a fixpoint 
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when minds agree? The most natural candidate for such a semantics is a function that 
maps language expressions on mental states, and vice-versa – a kind of interpretation 
function and its inverse. So, in our framework minds meet when the interpretation 
function mapping states of mind on states of mind via language finds a resting point – 
a fixpoint.  

Using fixpoints is, of course, not new to semantics. The semantics of programming 
languages often resort to fixpoints to define the “meaning” of a program: its meaning 
is where the program will stop (for a remarkable review, see [33]). In a different vein, 
Kripke’s [34] theory of truth is grounded on the notion of a fixpoint – in his case the 
fixpoints of a semantic evaluation function are at the focus of his interest. Fixpoints 
are also crucial in other fields, such as the study of semantic memory: content-
addressable memories usually store information as a fixpoint of a memory update 
process (the canonical example being [35]).  

However, here we make a fairly different use of the fixpoint notion to define our 
“meeting of minds” semantics, since we consider the fixpoints of an interactive, social 
process of meaning construction and evaluation. From this point of view, our use of 
fixpoints resembles more the one made by game theorists to define states of mutual 
compatibility of individual strategies. To some extent, we are following the tradition 
of communication games ([36], [37], etc), but to this tradition we are adding some 
assumptions about the topological and geometric structure of the individual mental 
spaces that will allow us to specify more substantially how the semantic emerges and 
what properties it has. 

Our argument is that some types of topological and geometric properties of mental 
representations are more likely to engender meetings of minds, because they lend 
more naturally fixpoints to communication activities. Thus, we shift from the conven-
tional emphasis on the way we share the same concepts to an emphasis on the way the 
“shape” of our conceptual structures makes it possible for us to find a point of con-
vergence. A parallel with the pragmatics of conversation in the Gricean tradition 
comes to the mind: just like maxims of conversation ensure that talk exchanges find a 
mutually accepted direction, we explore the complementary notion that the way we 
shape our concepts deeply affects the effectiveness of communication.  

On this ground, we make an implicit selection argument: just like wheels are round 
because they make transportation efficient, we expect to identify the shapes of con-
cepts that are selected to make communication smooth. 

It turns out that structural properties of conceptual representations that grant the ex-
istence of meetings of minds are to a large extent already familiar to cognitive seman-
tics and in particular to the theory of conceptual spaces. These basic properties are the 
metric structure induced by similarity, the closed/bounded nature of concepts, con-
vexity of conceptual representation, and the assumption that natural language, with all 
its resources, can “translate” (spatial) mental representations with reasonable ap-
proximation. In what follows, we will make more precise these notions and the role 
they play in a “meeting of minds” semantics theory. 

Our first step is to assume, following [38], that conceptual spaces are made out of 
primitive quality dimensions (often rooted in sensorial experience) and that similarity 
provides the basic metric structure to such spaces. The dimensions represent various 
“qualities” (colour, shape, weight, size, position …) of objects in different domains.  
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While the nature of psychologically sound similarity measures is still highly contro-
versial (and presumably differs between domains), numerous studies suggest that it is 
a continuous function of Euclidean distance in the conceptual spaces. Consequently, 
we will assume, as a first approximation, that conceptual spaces can be modelled as 
Euclidean spaces. 

It is not only in humans that one finds these kinds of representations. For example, 
Gallistel [39] devotes an entire chapter to “Vector spaces in the nervous system.” in 
his book on learning mechanisms in biological systems. He writes [39, p. 477]: ”The 
purpose of this chapter is to review neurophysiological data supporting the hypothesis 
that the nervous system does in fact quite generally employ vectors to represent prop-
erties of both proximal and distal stimuli. The values of these representational vectors 
are physically expressed by the locations of neural activity in anatomical spaces of 
whose dimensions correspond to descriptive dimensions of the stimulus.” Further-
more, it is well known that even fairly simple neural processing mechanisms can 
approximate arbitrary continuous functions [40]. 

In [38], it is proposed that concepts can be modelled as convex regions of a con-
ceptual space. While convexity may seem a strong assumption, it is a remarkably 
regular property of many conceptual representations grounded in perception (e.g., 
colour, taste, pitch). Furthermore, we will soon argue that convexity is crucial for 
assuring the effectiveness of communication.  

There are interesting connections between analyzing concepts as convex regions 
and the prototype theory developed by Rosch and her collaborators (see, for example, 
[30], [41], [42], [43]). When concepts are defined as convex regions of a conceptual 
space, prototype effects are indeed to be expected. In a convex region one can de-
scribe positions as being more or less central. In particular, in a Euclidean space one 
can calculate the centre of gravity of a region.  

It is possible to argue in the converse direction too and show that if prototype the-
ory is adopted, then the representation of concepts as convex regions is to be ex-
pected. Assume that some quality dimensions of a conceptual space are given, for 
example the dimensions of colour space, and that we want to decompose it into a 
number of categories, for example colour concepts. If we start from a set of proto-
types p1, ..., pn of the concepts, for example the focal colours, then these should be the 

central points in the concepts they represent. The information about prototypes can be 
used to generate concepts by stipulating that p belongs to the same concept as the 
closest prototype pi. It can be shown that this rule will generate a decomposition of 

the space – the so-called Voronoi tessellation. An illustration of the Voronoi tessella-
tion is given in figure 1. 

A crucial property of the Voronoi tessellation of a conceptual space is that it al-
ways results in a decomposition of the space into convex regions (see [44]). In this 
way, the Voronoi tessellation provides a constructive geometric answer to how a 
similarity measure together with a set of prototypes determine a set of categories.  

As long as concepts are closed and bounded regions of conceptual spaces, they ac-
quire one more crucial topological property: compactness. Euclidean metrics, com-
pactness and convexity set the stage for our fixpoint argument. But before getting 
there, a last point must be made briefly. A basic tenet of cognitive semantics is that 
language can preserve the spatial structure of concepts. One way to say it is that  
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Fig. 1. Voronoi tessellation of the plane into convex sets 

language can preserve the neighbourhood relations among points of conceptual 
spaces. In topology, a neighbourhood preserving function is nothing but a continuous 
function. In other words, assuming that language can preserve neighbourhood rela-
tions of conceptual spaces implies assuming that language can establish a continuous 
mapping between mental spaces of different individuals – and a continuous mapping 
of the product space of individual mental spaces on itself. While this continuity as-
sumption may seem extreme, it basically says that natural language must have enough 
plasticity to map neighbourhoods of points in a conceptual space on neighbourhoods 
of points in another conceptual space – or in the space itself. Furthermore, as we shall 
see, this assumption can be relaxed to assume that such continuous mappings can be 
suitably approximated. 

Now all ingredients are there, and we can simply remind you of one of the most 
fundamental results of analysis, Brouwer’s [45] theorem: each continuous map of a 
convex, compact set on itself has at least one fixpoint. In the present context, this 
result basically tells us that, no matter what is the content of individual mental repre-
sentations, provided that such representations are “well shaped” and that language is 
plastic enough to preserve the spatial structure of concepts, there will always be at 
least one point representing a “meeting of minds.” Furthermore, given a continuous 
function and convex compact spaces, whenever such spaces can be decomposed in 
smaller convex closed subsets (they can be “triangulated”), there will always be a 
function mapping such decomposition on itself (called a “simplicial approximation”) 
that will approximate the continuous function, and preserve its fixpoint property. In 
other words, such fixpoints may be still approximated by a coarser mapping.  

After this short and very informal mathematical detour, our central claim should 
become apparent: whenever the facility to reach a meeting of minds matters, convex 
mental representations provide a background over which language can deploy most of 
its power. We see this as an indirect explanation of why concepts are in general con-
vex. Please note that we are not claiming that convex representations are “faithful” 
representations of the world – we just claim that since they are effective, one should 
find them quite widespread. In fact, our claim implies that one should expect to find 
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convex representations even in cases in which they are biased representations of the 
world: seeing a non convex world with convex spectacles might be a peculiar bias 
arising from selective pressures towards effective communication. 

Brouwer’s theorem provides us with an existence result that guarantees that an ap-
propriate meeting of minds can be found among a set of communicators that have 
convex and compact mental representations of meaning. However, the result does not 
in itself say very much about the contents of the fixpoint or how it can be reached. 

6   Two Examples 

We now proceed to briefly present two examples of how the meeting of minds can 
emerge in communicative systems. There are many ways in which such an interactive 
semantics can be established. In some cases it can be a proper game of communica-
tion, where the meeting of minds can be interpreted as an equilibrium of the game. In 
other cases, it can result from simpler adaptive processes that do not require strategic 
reasoning.  

Jäger and van Rooij [46] provide an example of the first kind. Their domain is the 
colour space and the problem they approach is how a common meaning for colour 
terms can develop in a communication game. In their example, there are only two 
players: s (signaller) and r (receiver). It is assumed that the two players have a com-
mon conceptual space C for colour. Jäger and van Rooij define the space as a “con-
tinuous space” but from their following claims, it clearly must be a compact and  
convex space, such as a colour circle or a colour spindle. There is also a fixed and 
finite set M of n messages that the signaller can convey to the receiver. The colour 
space C can also be interpreted as a state space from which Nature draws points ac-
cording to some continuous distribution p. The signaller can choose a decomposition 
S of the space C in n subsets assigning to each colour a unique message. The receiver 
can choose where to locate n points, corresponding to the meaning assigned to each of 
the n messages by the signaller.  

The goal of the communication game is to maximize the average similarity be-
tween the intention of the signaller and the interpretation of the receiver. The commu-
nication game unfolds as follows. Nature chooses some point in the colour space, 
according to some fixed probability distribution. The signaller s knows the choice of 
nature, but the receiver r does not. Then s is allowed to send one of the messages to r. 
The receiver r in turn picks a point in the colour space. In the game, s and r maximize 
utility if they maximize the similarity between nature’s choice and r’s “interpreta-
tion”. Here is it only assumed that the similarity is a monotonically decreasing func-
tion of the Euclidean distance in the colour space between nature’s choice and r’s 
choice.  

A Nash equilibrium of the game is a pair (R*, S*), where R* is an n-tuple of points 
of C and S* is a decomposition (in n subsets) of C, such that both are a best response 
to each other. Jäger and van Rooij [46] show how to compute the best response func-
tions for each player. The central result of their paper can be restated by saying that if 
the colour space is convex and compact and the probability and similarity functions 
are continuous, then there exists a Nash equilibrium, and it corresponds to a Voronoi 
tessellation of the colour space (which results in convex subsets). 
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They also show how, in a simplified evolutionary version of the game, convex col-
our regions can emerge as the evolutionary stable solutions of the game. Jäger and 
van Rooij’s model is also interesting because it provides an illustration of how a dis-
crete system of signs (there are only n signs in their communication game) can give 
rise to continuous functions mapping agents’ mental representations on themselves. In 
their example, signs define an array of locations in the colour space, and the “best 
response function” of s and r continuously maps configurations of such array of points 
as responses to decompositions of C, and vice versa. In this language game, “lan-
guage” has to be plastic enough to grant the continuity of the “best response” func-
tion, and the meaning space C must have enough topological structure to afford the 
existence of fixpoints. Language plasticity is given here by the possibility to continu-
ously deform the decomposition S and the location of the points of R. 

As a second example, Hutchins [47] provides a case that is more loosely related to 
a game structure, but where fixpoints with a semantic valence result form simple 
adaptive dynamics shaped by communication. He models how individuals may reach 
an agreement over an interpretation of potentially incomplete and noisy signals from 
the environment. Each individual is represented as a constraint satisfaction network, 
in which nodes represent features (corresponding to quality dimensions in a concep-
tual space) of the world and connections between nodes impose some coherence be-
tween configurations of features.  

Communication between agents is modelled through connections between nodes of 
different agents. Through such connections the state of mind of an agent affects the 
states of mind of the other agents by transmitting the activation values of its nodes. In 
other words, communication continuously maps the state of minds of each agent on 
the states of mind of other agents in a feature space: Imagine a “feature-based” lan-
guage through which agents can express their beliefs about the state of the world.  

Hutchins shows by simulations how agents starting form different beliefs can con-
verge towards fixpoints that represent consensual interpretations of the state of the 
world. Consensus needs not to correspond to “reality”: In many cases it is a form of 
groupthink, convergence to beliefs dominated more by peer pressure than truth. Re-
visiting more formally Hutchins’ model, Marchiori and Warglien [48] prove that 
communication can give rise to new fixpoints that were not contained in individual 
initial memories – i.e. there may be genuine new meanings arising as meetings of 
minds among communicating agents. 

7   Conclusion 

In this article, we have first told a story about the evolution of communication based 
on the unique human capacity for planning for future goals. A consequence of our 
story is that in order for communication about non-present objects to succeed, the 
minds of the interlocutors must meet. In the second part of the paper, we have then 
presented a framework for how this process can be modelled as a fixpoint semantics. 
To some extent, we have followed the tradition of communication games, but the 
most innovative part of our model is the assumptions about the topological and geo-
metric structure of the mental spaces of the communicators. We have focused on the 
compactness and convexity of these spaces and, following Gärdenfors’ [38] work on 
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conceptual spaces, argued that these assumptions are very natural. These assumptions 
make it possible for us to apply Brouwer’s fixpoint theorem, which in this context, is 
interpreted as saying that for communicators with “well-behaved” mental spaces, 
there will always exist a meeting of their minds that represents the meaning of the 
expressions they use. We have also outlined two examples of how such a meeting can 
be achieved.  

The fixpoint semantics that we have presented provide us with rather new perspec-
tives on the functioning of semantics for natural languages. We hope to develop the 
model to show that this perspective is fruitful and that it can solve many of the prob-
lems for classical forms of semantics, for example problems concerning the reference 
of expressions for non-existing objects and that it can shed new light on the meaning 
of metaphors. 
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Abstract. We present a mathematical model of cross-situational learn-
ing, in which we quantify the learnability of words and vocabularies.
We find that high levels of uncertainty are not an impediment to learn-
ing single words or whole vocabulary systems, as long as the level of
uncertainty is somewhat lower than the total number of meanings in
the system. We further note that even large vocabularies are learnable
through cross-situational learning.

1 Introduction

One of the design features of human language is the arbitrary relationship be-
tween words and their meanings [1] — they are not related iconically, through
perceptual similarity, but merely by convention. Learning word-meaning map-
pings is therefore far from trivial, yet when children acquire language, they learn
the meanings of a large number of words very quickly. This phenomenon is known
as fast mapping [2]. Precisely how children achieve this remains to be established.

The problem of referential indeterminacy in acquiring word–meaningmappings
was famously illustrated by Quine [3]. He imagined an anthropologist interacting
with a native speaker of an unfamiliar language. As a rabbit runs by, the speaker
exclaims “gavagai”, and the anthropologist notes that “gavagai” means rabbit.
Quine showed, however, that the anthropologist cannot be sure that “gavagai”
means rabbit; in fact, it could have an infinite number of possible meanings, such
as undetached rabbit parts, dinner or even it will rain.

Developmental linguists have proposed many mechanisms which children may
use to overcome referential indeterminacy in word learning (see [4,5] for over-
views). Tomasello, for instance, proposes that the core mechanism is joint atten-
tion [6,7]; children understand that adults use utterances to refer to things, and
upon hearing an utterance they attempt to attend to the same situation as their
caregivers. Establishing joint attention in this way reduces the number of po-
tential meanings a word might have, although Quine shows that this cannot be
sufficient. Researchers have proposed a number of representational biases (e.g.
the whole object bias [8] and the shape bias [9]) and interpretational constraints
(e.g. mutual exclusivity [10] and the principle of contrast [11]) which might act
to further reduce the indeterminacy problem.

P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 31–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



32 K. Smith et al.

Further evidence suggests that children may learn the meaning of many words
more straightforwardly, by simply disambiguating potential meanings across
different occasions of use [12,13]. There is evidence that this process, known
as cross-situational learning, takes place from a very early age [14]. Cross-
situational learning is unlikely to provide a complete account of word learn-
ing, but does allow us to consider word learning in the absence of sophisticated
cognitive mechanisms.

Understanding how children learn the meaning of words is not only a key
question in developmental linguistics, but is also fundamentally an evolutionary
issue. Firstly, accounting for the design feature of arbitrariness requires us to
understand how the apparent problems introduced by arbitrary meaning-word
mappings might be resolved. Secondly, an account of the evolution of the capacity
for language must begin with a clear specification of the explanandum — for
example, must the capacity for language include domain-specific word learning
strategies? Finally, the indeterminacy of meaning is itself a important issue in
the literature on the computational modelling of linguistic evolution [15,16]

In this paper, we present a mathematical model of cross-situational language
learning and use it to quantify some basic properties of the learnability of words
and vocabularies. In the following section, we describe cross-situational learning
in more detail. Our formalisation is introduced in section 3, where we quantify
the learnability of individual utterances. In section 4, we extend the model to
quantify the learnability of a whole language. Finally, in section 5 we discuss
the study’s implications, and explore extensions of the model to address more
realistic treatments of language structure, use and learning.

2 Cross-Situational Learning

Cross-situational learning is a technique for working out the reference of an ut-
terance, based on multiple exposures to the utterance’s use in context. When an
utterance is produced, the context of its use will provide a number of candidate
meanings for that utterance. From a hearer’s point of view, each of these is in
principle equally plausible, and there is no obvious motivation for choosing be-
tween them. If the same utterance is produced in a different situation, however,
a different set of possible meanings may be suggested by that situation. The
hearer can make use of this, by taking the intersection of the two sets of possible
meanings, in order to (potentially) reduce the ambiguity of the utterance.

Cross-situational learning has been modelled computationally by Siskind [17],
who showed that it could indeed be used to learn word-meaning mappings. In
his model, a learner is exposed to a corpus of artificial sentences, each of which is
paired with a set of possible meanings. Initially, the learner associates each word
with all possible meanings. When hearing a word in a new situation, however, the
learner eliminates any existing meanings for that word which are not consistent
with the new situation.

Variants of the cross-situational model have been used to simulate the evolu-
tion of lexicons in multi-agent systems [16,18], in which meanings are built up
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through interaction with the world and other individuals. In these experiments,
Smith [18] and Vogt [16] have separately shown that conventionalised vocabu-
laries can emerge and persist through cross-situational learning. Our focus in
this paper is similar to Siskind’s — we are interested in the learnability of an
existing vocabulary system, rather than the negotiation of shared vocabularies
in a population. However, our approach is different — rather than modelling
cross-situational learning computationally, we seek as far as possible an exact
mathematical characterisation of the properties of the system. This paper rep-
resents a preliminary stage in this process.

3 The Mathematical Model of Cross-Situational Learning

In this section, we describe a mathematical model which we can use to specify
the probability of a learner learning the meaning of a word cross-situationally. In
every episode of exposure to an utterance, the hearer observes a situation which
provides both the intended meaning of the utterance (the target meaning) and
a set of other meanings incidentally provided by the situation (the context).

Assume that the context has the same number of members C in each episode,
but the members are chosen at random and without duplication from the larger
set of M possible meanings.1 There are therefore

(
M
C

)
different possible

contexts.
Let the context in episode Ee be Ce. If, after e episodes, a non-target meaning

has occurred in every episode E1. . . Ee, then that meaning is called a confounder
— this recurring meaning is an equally plausible meaning for the utterance as
the target meaning, given that it too is present in all e situations where the
utterance is used. Let the number of confounders after e episodes be Ke, and let
us assume that the meaning of a word is successfully learned after e episodes if
there are no confounders left (Ke = 0) — when Ke = 0, the target meaning is
the only one which has occurred in every one of the e episodes.

3.1 An Illustration

Let us take a simple example, with C = 3 and M = 5. The 10 possible con-
texts are enumerated in Fig. 1, and we assume for this exposition that they
are equiprobable, and that each therefore occurs with a probability of

(
M
C

)−1
.

In the graphical notation in Fig. 1, each context is represented as a row of M
boxes, with each box representing a meaning. A cross in a box denotes that that
meaning is present in the given context.

Note that there are necessarily C confounders (K1 = C) after E1 — each of
the meanings in context C1 has occurred as often as the target meaning, namely
once. Let us now investigate what happens in episode E2, taking context E1 =
{m1, m2, m3} as an example, and combining it with each possible context which

1 Note that M is exclusive of the target meaning. In other words, there are M + 1
possible meanings, and any situation provides C + 1 unique meanings: the target
and C unique additional meanings.
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m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5

m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5 m1m2m3m4m5

Fig. 1. Enumeration of
(

M
C

)
= 10 possible contexts, with C = 3 and M = 5

could occur in episode E2. Fig. 2 below shows the 10 resultant combinations,
the number of confounders K2, and the confounder meanings highlighted in
grey.

K2 = 3 K2 = 2 K2 = 2 K2 = 2 K2 = 2

K2 = 1 K2 = 2 K2 = 2 K2 = 1 K2 = 1

Fig. 2. Combinations of contexts after E2, with the number of confounders K2, and
the confounder meanings highlighted in grey

We can see in Fig. 2 that the set of confounders remaining after episode
E2 is dependent on the set of confounders from E1, and the meanings in C2.
We can ignore all meanings which did not occur in C1, as they can never be
confounders — a single non-occurrence in one episode is enough to rule out a
particular meaning as a confounder. More generally, the set of confounders Ke

after episode Ee depends on the set of confounders after the previous episode
Ee−1 , namely Ke−1, and the set of meanings chosen in context Ce.

Let the probability of having n confounders after e episodes P (Ke = n) be
Pn(e). The probability that a word is successfully learned after e episodes is
therefore P0(e). After E2, and assuming C1 = {m1, m2, m3}, we can see in Fig. 2
that P3(2) = 1

10 ; P2(2) = 6
10 ; P1(2) = 3

10 and P0(2) = 0
10 . Note in this case that

it is impossible to have learned a word after two episodes (P0(2) = 0), because
the context is larger than half of the number of possible meanings (C > M

2 ),
and so it is impossible to select disjoint sets for C1 and C2. It should be clear
that the choice of C1 = {m1, m2, m3} in this example is unimportant: the same
probabilities for each value of K2 are obtained for every possible choice for C1.

What happens, however, when there are fewer than C confounders at the
previous timestep (Ke−1 < C)? To examine this situation we have to look at
a further episode, E3. Let’s take C1 = {m1, m2, m3} , C2 = {m1, m2, m4} as an
example, giving K2 = 2, and combine it with all possibilities for C3, as depicted
in Fig. 3.

We can see that for K2 = 2, given C1 = {m1, m2, m3} and C2 = {m1, m2, m4},
the probabilities are P2(3) = 3

10 , P1(3) = 6
10 , P0(3) = 1

10 . The choice of C1 and C2
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K3 = 2 K3 = 2 K3 = 2 K3 = 1 K3 = 1

K3 = 1 K3 = 1 K3 = 1 K3 = 1 K3 = 0

Fig. 3. Combinations of contexts after E3,with the number of confounders (K3), and
the confounder meanings highlighted in grey

is again unimportant, as the same probabilities for each value of K3 are obtained
for each combination where K2 = 2. Similar calculations can be carried out for
K2 = 1, by choosing (for instance) C1 = {m1, m2, m3} and C2 = {m1, m4, m5}.

3.2 Calculating Semantic Inferrability

In general, the transition probability Q(x|y), i.e. that there will be x con-
founders after episode e, given that there were y confounders after episode e−1,
is:

Q(x|y) =
(

y

x

)
×
(

M − y

C − x

)
×
(

M

C

)−1

(1)

The first term
(

y
x

)
is the number of ways of correctly selecting confounders: y

is the number of confounders at time e − 1 (call this the confounding set), and
x is the number of confounders we want to have at time e. There are therefore(

y
x

)
ways in which the desired number of confounders x can be chosen from the

confounding set y. The second term
(
M−y
C−x

)
is likewise the number of ways of

correctly selecting non-confounders: M − y gives the number of meanings which
are not confounders at time e − 1 (call this the non-confounding set). Recall that
every context has C members, so if there are x confounders in a valid context,
then we must also select C − x non-confounders from the non-confounding set.
There are clearly

(
M−y
C−x

)
ways of choosing the desired number of non-confounders

C − x from the non-confounding set M − y, as shown in Fig. 4. The number
of valid contexts which satisfy the desired condition is the product of these two
expressions, divided by the total number of possible contexts, to produce the
overall transition probability Q.

Therefore, the probability Pn(e), that there will be n confounders after e
episodes is:

Pn(e) =
C∑

i=n

Pi(e − 1) × Q(n|i) . (2)

We have already seen, however, that if e = 1, then the number of confounders
is necessarily C, so for completeness (2) should be extended to cover the case
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y M − y

x C − x

pick x
from y

pick C − x
from M − y

Fig. 4. Building a context of size C, made up of x confounders chosen from the y
members of the confounding set, and C − x non-confounders chosen from the M − y
members of the non-confounding set.

where e = 1:

Pn(e) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if e = 1, n = C,
0 if e = 1, n �= C,

C∑
i=n

Pi(e − 1) × Q(n|i) otherwise.

(3)

In Appendix A, we solve (3) to give the following explicit formula for Pn(e):

Pn(e) =
(

C

n

) C∑
i=n

(−1)i−n

(
C − n

i − n

)
(pi)e−1 (4)

where

pi =

(
M−i
C−i

)
(
M
C

) =

{
1 for i = 0

C(C−1)...(C−i+1)
M(M−1)...(M−i+1) for i > 0 (5)

is the probability that a particular subset of i members of the C confounders in
the first episode E1 appear in any subsequent episode.

3.3 Word Learnability Results

Using either (3) or (4), therefore, we can quantify the learnability of an indi-
vidual word — the probability that an individual word will be learned, P0(e)
— which depends on M , C, and e. Fig. 5 shows word learnability for M = 50,
for various values of C. Two basic results are apparent: (i) A word cannot be
learned when C = M , as confounders can never be eliminated; (ii) For all other
cases, learnability increases over time, although it may be the case (for example,
when C is high) that learnability remains at zero for a number of exposures,
before becoming non-zero.
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Fig. 5. Word learnability given M = 50, for various C

We can also quantify the number of episodes e∗ required to learn a word with
probability 1 − ε. Fig. 6 (a) shows e∗ given M = 50, with ε = 0.01, for various
context sizes. Expected values are derived from Eqn. (3), exact values by Monte
Carlo simulation2. It is clear that the results from the Monte Carlo simulation
closely match the results from the mathematical model. In addition, we see that
(iii) the smaller the context size, the quicker a word can be learned; (iv) as C
approaches M , it takes a long time to learn a word, as confounders are only
rarely eliminated. Fig. 6 (b) shows e∗ given C = 5, with ε = 0.01, for various
M . We can see that (v) words can be learned more rapidly as the number of
meanings increases; as M increases, it becomes less likely that any one meaning
will recur in every context with the target meaning.

4 Quantifying the Learnability of a Whole Language

The model described in the previous section only considers the learnability of
a single word. One conclusion is that, given a fixed context size, the meaning
of a particular word is easier to learn if that word is part of a large system for
conveying a large number of distinct meanings (M is large). This suggests that
we need to consider the learnability of a whole vocabulary system consisting of
a number of words, each of which conveys a particular meaning, rather than
considering word learnability in isolation.

In order to do this, we must first introduce a minor change to our notation.
When considering the learnability of a single word, we were concerned with the
number of meanings other than the target meaning, and the number of meanings
in the context other than the target meaning. We denoted these as M and C
respectively. When quantifying the learnability of a whole set of words, we are
necessarily interested in cases where the target meaning for a particular word
may also occur as a non-target meaning for some usage of some other word. Let
2 In the simulation, a learner works through a series of exposures, eliminating candi-

date meanings. e∗ is the number of episodes required to achieve learnability of 1− ε
averaged over 1000 such simulations.
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Fig. 6. The number of episodes required to learn a word with probability 0.99 varies
with the number of meanings and the context size; (a) shows e∗ given M = 50, for
various C, (b) shows e∗ given C = 5, for various M . Lines are expected values, points
are actual (Monte Carlo simulation) values.

us therefore call the total number of lexicalised meanings in a vocabulary system
M̄ . In every episode of exposure to an utterance conveying one of these meanings,
the hearer observes a situation which provides both the target meaning and a
context of other meanings. The number of meanings involved in the context,
inclusive of the target meaning, is given by C̄. The C = C̄−1 non-target meanings
in the context are chosen at random and without duplication from the larger set
of M = M̄ −1 possible meanings. In other words, M̄ and C̄ are inclusive, rather
than exclusive, of the target meaning.

It is convenient, at least initially, to consider the situation where only W of
the total number of possible meanings M̄ are ever chosen as the target. We
seek now RW (e), the probability that all W of these words have been learned
after e episodes; the probability that the whole language has been learned is
then given by the special case W = M̄ . To obtain this, we must average over
all W e sequences of utterances. Some particular sequences may, or may not, be
equivalent to one another depending on what inferences are made by the learner.
If, for example, the learner assumes that different words do not have the same
meaning, then the order with which the words are presented matters. Under
this assumption, if the word for a meaning is learned then that meaning can no
longer act as a confounder for the remaining meanings. This induces non-trivial
interactions between episodes in which different words are uttered. On the other
hand, if the learner entertains the possibility that two words may have the same
meaning, then they must wait until all meanings other than the target have been
ruled out. In this latter case, the probability that a meaning has been learned
is independent of the order in which the words are presented, and thus depends
only on the number of times a particular meaning has been chosen as the target.
In this much simpler case, which we will focus on here, only the number of times
a word is uttered is important: order of presentation does not matter.

In this case, the probability of learning all W words is given by

RW (e) = 〈P0(e1)P0(e2) · · ·P0(eW )〉 (6)
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where the angle brackets denote an average over the probability distribution of
sequences of e episodes in which the first word of interest is the target e1 times,
the second e2 and so on. This distribution is the multinomial distribution

1
W e

(
e

e1e2 · · · eW

)
≡ 1

W e

e!
e1!e2! · · · eW !

constrained such that
∑

i ei = e. The functions P0(ei) appearing in Eqn. (6) are
as given by Eqn. (4). It is possible to calculate this average exactly; unfortunately,
the expression that results is rather unwieldy and extremely difficult to interpret.
We thus derive instead an approximation to RW (e) that admits a clearer insight
into the learnability of an entire language.

This approximation is obtained by focusing on the regime where the language
is learnt to a high probability, i.e., where RW (e) = 1 − εW and the parameter
εW is small. For example εW = 0.01 corresponds to having learned the words
with 99% certainty. In Appendix B, we present the details of this approximate
approach which results in the following expression for the probability of learning
W of M̄ words after e episodes:

RW (e) ≈
W∑

k=0

(
W

k

)
(1 − M̄)k

[
1 − k

W

(
M̄ − C̄

M̄ − 1

)]e

. (7)

Since each term in the series is progressively smaller, and the relative size of each
term is roughly equal to the absolute size of the previous term, the series can be
truncated at k = 1 as long as εW is sufficiently small. Inverting this truncated
expression gives an indication of the time taken to learn the whole language with
probability 1 − εW . It reads

e∗ ≈ ln[εW ] − ln[W (M̄ − 1)]

ln
[
1 − 1

W

(
M̄−C̄
M̄−1

)] . (8)

Since various approximations have been made to arrive at this formula, it is
worth testing its validity by comparing with data from Monte Carlo simulations.
Fig. 7 shows the match between expected and actual (obtained from simulation)
values given various values of ε, C̄ and M̄ = W . As can be seen from the
figures, there is close agreement between the actual and expected values as long
as εW is not large (Fig. 7 (a)) and C̄ is not small (Fig. 7 (b)). The former
condition is easily understood, since εW was assumed to be small throughout
the derivation of (7) and (8). Meanwhile, a closer analysis of the approximations
used in Appendix B to derive these expressions shows that strong fluctuations
in the number of episodes required to learn a single word lead to the breakdown
of the approximation when C̄ is small.

Fig. 7 (b) shows e∗ given M = 50, εW = 0.01, for various context sizes. It is
apparent that (i) the smaller the context size, the quicker a whole vocabulary
can be learned; (ii) as C̄ approaches M̄ , it takes a long time to learn a word,
as confounders are only rarely eliminated. In other words, C̄ does not have to
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Fig. 7. The number of episodes needed to learn a whole vocabulary with probability
1 − εW . (a) shows e∗ given M̄ = 50, C̄ = 25, for various εW . (b) shows e∗ given
M̄ = 50, εW = 0.01, for various C̄. (c) shows e∗ given C̄ = 25, εW = 0.01, for various
M̄ . Lines are expected values, points are actual (Monte Carlo) values. Note log scales
on (a) and (b).
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be very small for a vocabulary to be learned in a reasonable time, as long as it
is fairly small relative to M̄ . Fig. 7 (c) shows e∗ given C̄ = 25, εW = 0.01, for
various M̄ . Here we see that (iii) it is easiest to learn a whole language when C̄
is less than M̄ and both are relatively small.

Fig. 7 (c) further suggests that, once M̄ is significantly greater than C̄, e∗

increases linearly with M̄ . In fact, putting W = M̄ in Eqn. (8) suggests that the
rate of increase is slightly greater than linear. Specifically, one finds that once
M̄ has greatly exceeded the larger of C̄ and ln εW ,

e∗ ∼ 2M̄ ln M̄ . (9)

In other words, (iv) while the time taken to learn a vocabulary of a particular
size increases superlinearly with respect to the size of that vocabulary, there is no
critical value of M̄ beyond which e∗ increases dramatically — large vocabularies
are learnable through cross-situational learning.

5 Discussion

We have outlined a mathematical formulation of cross-situational learning, and
presented some basic results linking word and vocabulary learnability to the
size of the vocabulary system, the number of candidate meanings provided by a
context of use, and the amount of time for learning. Based on these results, it
is tempting to speculate on the human case, particularly from an evolutionary
perspective — for example, we might claim that humans have a long period of
developmental flexibility to allow them time to learn a large vocabulary system,
or that humans have evolved a number of biases for word-learning to reduce the
effective context size during word learning and make large vocabularies learnable
in a fairly short period of time.

However, several shortcomings in the model as it stands need to be addressed
before such speculations can be entertained (if at all). Firstly, and most im-
portantly, we have considered both words and meanings to be unstructured
atomic entities. The model as it stands is therefore better interpreted as quanti-
fying the learnability of a holistic system. In compositional systems, such as lan-
guage, meanings are structured objects and utterances are structured sequences
of words. We are currently extending this model to explore such a situation,
in order to contrast the learnability of words in systems of different structural
kinds.

Secondly, we assume that all meanings occur with uniform probability. This is
unlikely to be exactly true, and it may be that the frequency of communicatively-
relevant situations is highly non-uniform, possibly Zipfian [19]. How does this
affect word learnability? Again, we are extending our model to allow us to in-
vestigate such questions.

Finally, as discussed in section 4, we have assumed that the meaning of each
word is learned independently — learning something about the meaning of one
word tells you nothing about the meaning of another word. We know, however,
that this assumption is not true for humans, who instead appear to assume that
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if one word has a particular meaning, then no other word will have that same
meaning — this is mutual exclusivity [10]. How much, if at all, does mutual
exclusivity simplify the learning of words in holistic or structured systems? We
are also investigating this question using a Monte Carlo version of our model.

The model outlined here is, we feel, an important first step on the path to a
more thorough and formal understanding of the developmental and evolutionary
problem of word learning.
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A Exact Solution for the Single Word Case

The exact solution given in Eqn. (4) can be obtained in two ways: (i) by diago-
nalisation of the matrix of transition probabilities Q(x|y); or (ii) by applying the
“inclusion-exclusion” principle (or sieve method) from combinatorics. In this Ap-
pendix, we outline the latter approach which, as explained by Wilf [20, p.110], is
useful when “it is relatively easy to see how many objects have at least a certain
number of properties and maybe more”. The sieve method, he goes on to explain,
converts this “at least” information into the desired “exactly” information.

In our application, we seek Pn(e), the probability that n of the initial C con-
founders are present in each of a number e of episodes. The “at least” information
here is the probability pn that a specific subset of n confounders appears in each
of e episodes, along with maybe some other confounders. This probability is
given by pe−1

n Eqn. (5), since the desired subset is always present in the first
episode (by definition), and then with probability pn in subsequent episodes.

The sieve method then states that the probability of having a subset of N
confounders present in every episode is given by the sum

Pn(e) =
C∑

i=n

(−1)i−n

(
i

n

) ∑
i-subsets of C confounders

pe−1
i (10)

=
C∑

i=n

(−1)i−n

(
i

n

)(
C

i

)
pe−i

i (11)

where we have used the fact that there are
(
C
i

)
distinct subsets of size i contained

within a set of C objects. The result (4) then follows from the fact that
(

i
n

)(
C
i

)
=(

C
n

)(
C−i
i−n

)
, as can be verified by writing the binomial coefficients explicitly in

terms of factorials.

B Approximate Solution for the Multiple Word Case

We are interested in determining the probability RW (e) that W of M̄ meanings
have been learnt after a total number of e episodes in the regime where RW (e) ≈
1. Our approach rests on the following observation: if all W words are to be learnt
with certainty 1−εW (εW being a small parameter), each of the factors P0(ei) in
Eqn. (6) should contribute an amount approximately equal to 1 − εW

W . That is,
every word has to be learnt (on average) to a higher level of certainty; the value
of ε for a single word (ε1) is approximately equal to εW

W . Looking at Fig. 5, we
see that to achieve this high level of single-word learnability, many utterances of
each individual word are required in order to eliminate all confounding meanings.
The upshot of this is that, since ei is expected to be large, the expression for
P0(ei), Eqn. (4), is well approximated by the first two terms in the series. We
henceforth assume that we can write

P0(ei) ≈ 1 − (M̄ − 1)
(

C̄ − 1
M̄ − 1

)ei

. (12)
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Using this approximation in Eqn. (6) we find

RW (e) ≈
〈

W∏
i=1

[
1 − (M̄ − 1)

(
C̄ − 1
M̄ − 1

)ei
]〉

(13)

=
W∑

k=0

(
W

k

)
(1 − M̄)k

〈(
C̄ − 1
M̄ − 1

)e1+e2+···+ek
〉

. (14)

The average over the multinomial distribution can then be computed by noting
the identity

∑
e1

∑
e2

· · ·
∑
eW

(
e

e1e2 · · · eW

)
ue1

1 ue2
2 · · ·ueW

W = (u1 + u2 + · · · + uW )e (15)

which yields Eqn. (7). As we note in the text, the approximation (12) holds as
long as fluctuations in the number of episodes in which a particular meaning is
the target are small relative to the mean.
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Abstract. In word meaning acquisition through interactions among humans and 
agents, the efficiency of the learning depends largely on the dialog strategies the 
agents have. This paper describes automatic acquisition of dialog strategies 
through interaction between two agents. In the experiments, two agents infer 
each other’s comprehension level from its facial expressions and utterances to 
acquire efficient strategies. Q-learning is applied to a strategy acquisition 
mechanism. Firstly, experiments are carried out through the interaction between 
a mother agent, who knows all the word meanings, and a child agent with no 
initial word meaning. The experimental results showed that the mother agent 
acquires a teaching strategy, while the child agent acquires an asking strategy. 
Next, the experiments of interaction between a human and an agent are investi-
gated to evaluate the acquired strategies. The results showed the effectiveness 
of both strategies of teaching and asking. 

1   Introduction 

As demand grows for more natural communication with human-like agents such as 
anthropomorphic agents, avatars, animated agents, talking heads, etc., research and 
development have begun on allowing people to communicate with such agents using 
the advanced interface of multi-modal interaction (MMI). 

When receiving input modalities such as speech and gesture, the agents with MMI 
integrate the multiple modalities and interpret them, then they hold a conversation 
sometimes according to the context. However, because the current MMI technologies 
enable us only to interact with the agents along dialog scenarios described by system 
designers, the applications are quite limited. MMI without dialog scenarios requires 
autonomous agents who acquire the knowledge of multimedia objects in the real world 
and interact with humans under this commonly grounded knowledge. Namely, the 
agents need to acquire the meanings of words through interactions with end-users in 
the real world. Moreover, automatic acquisition of dialog strategies used for word 
meaning acquisition is another important function when making the learning effective. 

Roy et al. [1] and Iwahashi et al. [2] respectively proposed mechanisms to acquire 
word meanings that represent relations among visual features of objects and acoustic 
features of human speeches using machine learning methods. With the help of these 
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mechanisms, robots learn to understand word meanings in the real world. On the other 
hand, Levin et al. [3] and Singh et al. [4] investigated how to adapt dialog strategies to 
the environment by applying reinforcement learning to a human-machine interaction 
corpus. In the two approaches, interpretation of unknown utterances and adaptation of 
dialog strategies are separately investigated, however, we should apply both of them 
to the interaction at the same time because interpretation and dialog control depend on 
each other. In the case of children’s language acquisition, a parent teaches his/her 
child through cooperative interaction and the child acquires not only word meanings 
but also dialog strategies. 

We are developing Infant Agents (IAs) that are modeled after the word meaning 
acquisition and the dialog strategy acquisition process of human infants [5]. IAs auto-
matically acquire dialog strategies through interactions among IAs. In this paper, we 
propose a method for dialog strategy acquisition that uses each other's comprehension 
level which is inferred from an agent's or a human’s facial expressions and utterances. 
The experiments on dialog strategy acquisition are carried out through interaction 
between two IAs. Then, we confirm the effectiveness of the acquired strategies 
through the interaction between a human and an IA. 

In section 2 we explain IAs and a dialog strategy acquisition method. In section 3 
we conduct the experiments on automatic acquisition of dialog strategies. In section 4 
we evaluate the acquired strategies. Lastly, in section 5, we describe the conclusions 
of this paper. 

2   Infant Agent 

We are developing IAs modeled after human infants [5]. IAs learn word meanings 
through human–IA interaction, then share the word meanings acquired by each other 
via a network. This knowledge-sharing is achieved through interaction in the same 
manner that humans learn from one another. Furthermore, IAs, through interaction 
between themselves, automatically acquire dialogue strategies which are needed to 
efficiently learn each other's knowledge. 

2.1   Learning of Word Meanings 

The experiments are executed in a virtual space on a computer. There are nine objects 
in this space. Each object has visual features such as shape and color. Such object 
features are categorized into six types (globe, triangle, cube, red, blue, and white). In 
the first step of the learning, an IA chooses an object and asks a question to a counter-
part, which is a human or another IA. This question is performed by pointing at the 
object, not by speaking. We call this asked object a topic object. Then, the counterpart 
teaches one or two words representing the object features by his/her/its utterance. For 
simplicity, we assume that IAs have a mechanism for converting the utterance into a 
phoneme sequence, and IAs directly receive a phoneme sequence as the utterance (see 
Fig. 1). However, each phoneme contained in the sequence is incorrectly received 
with probability 0.1. When receiving a pair of a phoneme sequence and object fea-
tures, the IA divides the phoneme sequence into words by referring to its Word Mem-
ory that stores frequencies of words and object features. If the phoneme sequence 
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contains an unknown word, the IA newly registers the pair of the word and the object 
features in its Word Memory. If known words appear in the phoneme sequence, the 
IA increments their frequencies. Then, the IA calculates the conditional probability 
P(x | w), where w is a word and x is an object feature. If the probability meets the 
following three conditions, the IA acquires a relation between the word w and the 
feature x as the meaning of w. 

(1) A word w has been learned more than 3 times. 
(2) P(x | w) > 0.9 
(3) Only one feature x meets the condition (2). 
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Fig. 1.  Object features and phoneme sequences. Each phoneme sequence represents the object 
feature written on the left. 

2.2   IA’s Actions and Facial Expressions 

In the above section, we explained the algorithm for the learning of word meanings 
that is applied to IAs. In the IA–IA interaction or the human–IA interaction, IAs carry 
out in turn the actions such as asking a question and teaching words. The actions are 
chosen according to the IA's dialog strategy. The dialog strategies should be con-
trolled according to the comprehension level of each other. For example, when there 
are few words that are known by a counterpart, it is more efficient to teach one word 
because it is difficult for IAs to divide an utterance containing two words into correct 
words. And IAs have to choose according to each other's comprehension level either 
by teaching or asking. However, the counterpart's comprehension level must be in-
ferred by IAs because it cannot be referred to directly. Therefore, in this paper, we 
assume that IAs and humans change their own facial expression as a representation of 
their comprehension of the counterpart's last utterance. We also give IAs a mechanism 
that infers the comprehension level from the counterpart's facial expressions and ut-
terances. In the following sections, we explain the actions, facial expressions, and 
inference mechanism of IAs. 

2.2.1   Actions 
IAs can carry out the following six actions. 

(1) "NO ACT": Nothing is done. 
(2) "CHANGE A TOPIC": An IA changes a topic by choosing an object randomly. 
(3) "ASK": An IA asks a question by pointing at a topic object. 
(4) "IMITATE": An IA imitates a counterpart's utterance. 
(5) "ADD A WORD": An IA randomly chooses a word from its Word Memory and 
adds it to its Speech Register. 
(6) "SPEAK": An IA utters the contents of its Speech Register. 
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A dialog starts when one of the IAs carries out "ASK" after "CHANGE A TOPIC". 
Then, IAs perform in turn one of the six actions according to their strategies which 
are under learning. After an IA carries out the above (1), (3), (4) or (6), the counter-
part's turn comes, or the IA takes its turn again after carrying out "CHANGE A 
TOPIC" or "ADD A WORD". 

"CHANGE A TOPIC" can be carried out repeatedly up to 9 times. This means that 
an IA can strategically choose one from nine objects. For example, according to a 
strategy it can perform "CHANGE A TOPIC" until it finds an unknown object. 

"ADD A WORD" can be carried out repeatedly up to 2 times and "SPEAK" can be 
carried out after it. "ADD A WORD" is an action to randomly choose a word from the 
IA’s Word Memory and add it to its Speech Register that stores words to be uttered. 
However, we assume that the added words represent features of a topic object. IAs 
construct a teaching utterance by iterating this action. "SPEAK" is an action to speak 
the content stored in the Speech Register. 

"IMITATE" is an action to imitate a counterpart's utterance. By performing this ac-
tion, IAs can check whether taught utterances were conveyed correctly. 

2.2.2   Inference of Comprehension Level 
When the counterpart's facial expression becomes comfortable or neutral after an IA 
teaches words, the IA considers that the counterpart already knows the correct mean-
ings of the words, and so adds the words to its own Shared Word Memory. The 
Shared Word Memory stores those words that have been shared with a counterpart. 
And, when a counterpart's utterance does not conflict with the knowledge held by an 
IA, the IA adds the uttered words to its own Shared Word Memory. For their own 
dialog strategies, IAs use the information of the Shared Word Memory as a reflection 
of the counterpart's comprehension level. 

2.2.3   Facial Expressions 
IAs have three types of facial expression: neutral, comfortable, and uncomfortable. 
When new word meanings are acquired or new words are shared, an IA's facial ex-
pression becomes comfortable. If an unknown word is contained in a counterpart’s 
utterance, the IA's facial expression becomes uncomfortable. In other cases, the IA's 
facial expression remains neutral. 

2.3   Dialog Strategy Acquisition 

We use Q-learning as a strategy acquisition mechanism. Q-learning [6] is one of the 
online Reinforcement Learning algorithms and is widely used to optimize an agent's 
behavior. The following sections explain the states and rewards which are used in  
Q-learning. 

2.3.1   States of Q-Learning 
In order to acquire dialog strategies based on a past dialog history and the comprehen-
sion level of a counterpart, IAs recognize states by using not only the information for 
expressing current dialog situations (such as a counterpart's facial expressions and 
actions) but the contents of each IA’s Word Memory and Shared Word Memory. 
Specifically, a state is recognized for the following 8-dimensional information. 
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(1) Counterpart's action 
(2) Counterpart's facial expression 
(3) Own last action 
(4) Own facial expression 
(5) The number of words that represent features of a topic object 
(6) The number of shared words in (5) 
(7) The number of words in the Speech Register 
(8) The number of shared words in the Speech Register 

2.3.2   Rewards of Q-Learning 
In order to realize cooperative learning of word meanings, rewards should be given 
according to not only an IA's own learning situation but also the counterpart's learning 
situation. Therefore, we calculate rewards r as follows. 

,
2

21 rr
r

+=  (1) 

where r1 is a reward according to the IA's own learning situation and r2 is a reward 
according to the counterpart's facial expression. 

Table 1 shows actual values of rewards. 

Table 1. Rewards of Q-learning 

r1

New word meanings were acquired, 20n
where n is the number of the acquired words at once.

New words were added into IA's Shared Words Memory. 5
"CHANGE A TOPIC" or "ADD A WOED" was paformed. 0
The other cases. -1

r2

The counterpart's facial expression became comfortable. 5
The counterpart's facial expression became neutral or uncomfortable. -1  

3   Experiments of Dialog Strategy Acquisition 

3.1   Experimental Setup 

We investigate the acquisition of dialog strategies through the interaction between 
two IAs designed in the previous section. Six words are used in our experiments, 
where all of them are given as initial knowledge to the IA that is called IA1. The other 
IA is called IA2 and does not have the initial knowledge. 

We define a dialog as a sequence of interaction until IA2 acquires all word mean-
ings or until 100 turns have passed. At the beginning of each dialog, the word mean-
ings learned by IA2 are reset, however, the strategy of each IA is preserved and is  
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continuously learned across the dialogs. In the experiment, 100,000 dialogs are iter-
ated and both IAs acquire dialog strategies according to their own initial knowledge. 
Each IA decides its action based on the -greedy policy in the learning step, where  is 
set to 0.1. The learning rate of Q-learning is decreased from 0.1 to 0.001, according to 
the frequency of learning, and the discount rate of Q-learning is set to 0.9. 

After the dialog strategy acquisition, we execute 1,000 dialogs between IA1 and 
IA2 following the acquired strategies in order to evaluate their efficiency. In the 
dialogs to be evaluated, the IAs do not learn dialog strategies. Each IA chooses its 
action on the basis of the greedy policy that is following the highest Q-value at any 
time. Then, we compare its efficiency with the efficiency of the interaction between 
two agents whose strategies have been designed by us; one of the agents is an IA that 
has been given the role of teacher and is called TA, and the other is an IA that has 
been given the role of learner and is called LA. The TA has the initial knowledge 
while the LA has none. Their strategies are as follows: The TA randomly chooses 
between "ADD A WORD" and "SPEAK". The LA randomly chooses an object and 
asks about it. 

3.2   Experimental Results 

First, we show how the actions of IA1 and IA2 change by the strategy acquisition. 
Figure 2 shows that the IAs before the strategy acquisition choose each action with a 
constant proportion regardless of dialog situations. On the other hand, Figure 3 shows 
that the IAs after the strategy acquisition choose actions according to the progress of 
the dialogs. And, after the strategy acquisition, IA1 has a tendency to choose teaching 
actions such as "ADD A WORD" and "SPEAK", and IA2 has a tendency to choose 
learning actions such as "CHANGE A TOPIC", "ASK" and "IMITATE". These re-
sults show that each IA acquired a teaching strategy or an asking strategy according to 
its own initial knowledge. 

Next, we show an example of interaction between the IAs that follow the acquired 
strategies in Fig. 4. In the first turn, IA1 taught the word “maru”. Then IA2 tried to 
imitate IA1's utterance but heard it wrongly and said, "matu." In the second turn, IA1 
made IA2 correctly learn the word by teaching "maru" again. When IA2 could cor-
rectly speak the word, IA1 considered that the word had been shared with IA2. Then 
IA1 began to teach two words as shown in the third turn. In each of the first, second 
and fifth turns, IA1 taught one word, because "maru" or "sikaku" had not been shared. 
IA1’s strategy can efficiently teach words according to the counterpart’s comprehen-
sion level. IA2 could learn correct words by imitating IA1’s utterance as shown in the 
second turn. Moreover, when IA2's facial expression was neutral or IA2 acquired new 
word meanings, IA2 changed the topic object, as shown in the fifth, eighth and ninth 
turns. IA2’s strategy is efficient because it can appropriately change a topic object 
according to IA2's own comprehension level. 

Finally, we show the efficiency of the IA1–IA2 interaction and the TA–LA interac-
tion in Fig. 5. Figure 5 shows that the IA1–IA2 interaction is more efficient than the 
TA–LA interaction. 
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Fig. 2.  Actions of IA1 (left) and IA2 (right) before strategy acquisition 

 
Fig. 3.  Actions of IA1 (left) and IA2 (right) after strategy acquisition 

0 start of dialog

1 IA2:(- -) IA2 indicated a bule globe.

IA1:(- -) IA1 said, "maru."

2 IA2:(x x) IA2 imitated IA1's utterance and said, "matu."

IA1:(x x) IA1 said, "maru."

3 IA2:(x x) IA2 imitated IA1's utterance and said, "maru."

IA1:(^_^) IA1 considered "maru" as a shared word and said, "maruao."

4 IA2:(x x) IA2 imitated IA1's utterance and said, "maruao."

IA1:(^_^) IA1 considered "ao" as a shared word and said, "aomaru."

5 IA2:(- -) IA2 indicated a red cube.

IA1:(- -) IA1 said, "sikaku."

6 IA2:(x x) IA2 imitated IA1's utterance and said, "sikaku."

IA1:(^_^) IA1 considered "sikaku" as a shared word and said, "sikakuaka."

7 IA2:(x x) IA2 imitated IA1's utterance and said, "sikakuaka."

IA1:(^_^)  IA1 considered "aka" as a shared word and said, "akasikaku."

8 IA2:(- -) IA2 indicated a red triangle.

IA1:(- -) IA1 said, "sankakuaka."

9 IA2:(x x) IA2 acquired the meaning of "aka" and indicated a blue cube.

IA1:(- -) IA1 said, "sikakuao."

10 IA2:(^_^) IA2 acquired the meanings of "sikaku" and "ao".  

Fig. 4.  Interaction example between IA1 and IA2 
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Fig. 5. Performance of acquired strategies. The horizontal axis represents the number of turns 
while the vertical axis represents the number of words correctly acquired by IA2 or the LA. 

4   Evaluation of the Acquired Strategies Through Human–IA 
Interaction 

In this section, through interaction between a human and an IA, we evaluate the 
strategies that have been acquired by IA1 and IA2 in the above section. 

In order to realize human–IA interaction on the basis of the same conditions as the 
interaction between IAs, we developed an experimental system that enables a human 
to teach or learn word meanings through interaction with an IA. Figure 6 shows the 
execution screen of the experimental system. In the virtual space of the experiment, 
there are an IA and nine objects. A human, or an experimental subject, can choose the 
face icon that represents his/her facial expression every time an IA speaks. When it is 
the human’s turn, he/she can point at an object or input his/her utterance from a key-
board. The IA's utterance is displayed on a computer screen for three seconds. 

We prepare the following two types of experiment. 
Experiment (1): Evaluation of acquired teaching strategies: an experimental subject 

plays the role of a learner and learns word meanings from utterances of IAs. 
Experiment (2): Evaluation of acquired learning strategies: an experimental subject 

plays the role of a teacher and teaches word meanings to IAs. 

 

Fig. 6.  Human–IA Interaction System 
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We evaluate the performance of each acquired strategy. In both experiments, the 
subjects are seven undergraduates. In experiment (1), they interact with IA1 and the 
TA given only the role of a teacher. In experiment (2), they interact with IA2 and the 
LA. In the experiments, subjects are requested to understand IAs’ strategies (roughly) 
in preliminary interaction with the IAs. 

4.1   Evaluation of the Acquired Teaching Strategies 

In this experiment, experimental subjects learn word meanings from utterances of 
IAs. 

4.1.1   Experimental Setup 
The IAs teach the same six words as the above experiments of Section 3. Each word 
represents the shape or color of objects such as "cube" or "red". However, the experi-
ments will fail if the experimental subjects already know these words. Therefore, in 
order to prepare words that are not known by any subject, IAs automatically generate 
the phoneme sequences of the words at the beginning of each dialog. Specifically, IAs 
randomly choose 2 to 4 syllables from 45 types of syllable, which are prepared be-
forehand by us, and combine them to create words such as "HEKE" and "EUREKA". 
The experimental subjects know that a word spoken by IAs represent either the shape 
or color of objects. Namely, in this task, the experimental subjects translate IAs' lan-
guage into our language. The IA's utterance is displayed on a computer screen for 
three seconds. Every time IAs speak, the experimental subjects write down the mean-
ings of the words on specified paper. 

We compare IA1 that acquired the teaching strategy through the above experiment 
with the TA that decides randomly on the number of teaching words and speaks them.  

4.1.2   Experimental Results and Discussion 
In the TA–human interaction, the experimental subjects took about 12 turns to acquire 
the above six words on average. On the other hand, in the case of the IA1–human 
interaction, it was about 8 turns (see Fig. 7). 

By using the paired t-test, we assessed the significance of the difference between 
TA and IA1. The result showed a significant difference between them (level of sig-
nificance of the test P = 0.02 < 0.05) and demonstrated the effectiveness of IA1's 
strategy on the interaction with humans. 

Compared with the above IA–IA interaction (see Fig. 5), the experimental subjects 
were able to acquire the words about two times as quickly as IAs. One of the reasons 
for the result is the fact that humans use relationships between words to acquire word 
meanings. For example, when a red cube is called "KOKE" and then a red triangle is 
called "KOKEMOMO", IAs acquire the meanings of "KOKE" as a word representing 
the color red. Also, the experimental subjects too are able to acquire the meanings. 
Furthermore, by using the knowledge "word meanings do not overlap each other", 
they can acquire the meaning of "MOMO" as a word representing the shape of a  
triangle. 
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Fig. 7.  The number of words correctly acquired by humans when IAs are teachers 

4.2   Evaluation of the Acquired Learning Strategies 

In this experiment, experimental subjects teach word meanings to IAs. 

4.2.1   Experimental Setup 
The experimental subjects teach the same six words as in the above experiment. 

We compare IA2 that acquired the learning strategy through the experiment of Sec-
tion 3 with the LA that invariably asks about a different object. In the above IA–IA 
interaction, IAs can teach multiple words at a time, but in this interaction, the experi-
mental subjects invariably teach only one word in order to simplify their task. We 
assume that there is no recognition error. 

4.2.2   Experimental Results and Discussion 
In the human–LA interaction, the LA took about 30 turns to acquire the above six 
words on average. On the other hand, in the case of the human–IA2 interaction, it was 
about 24 turns (see Fig. 8). 

By using the paired t-test, we assessed the significance of the difference between 
LA and IA2. The result showed a significant difference between them (level of sig-
nificance of the test P = 0.03 < 0.05) and demonstrated the effectiveness of IA2's 
strategy on the interaction with humans. 

IA2 becomes more efficient as it acquires more words, because, as discussed, IA2 
asks preferentially about objects for which it has not yet acquired many words. 

Next, in order to compare the teaching strategies of the experimental subjects with 
IA's strategy under the same conditions, we show the results of the interaction be-
tween the TA' that invariably teaches only one word and the LA or IA2 in Fig. 8. In 
this interaction, we assume that there is no recognition error. Figure 8 shows that the 
experimental subjects can teach more efficiently words to both LA and IA2 than the 
TA'. One of the reasons for the result is the fact that humans can memorize teaching 
history including IAs' response and can intentionally teach those words that have not 
yet been acquired by IAs. Moreover, the experimental subjects were using not only 
their memories but also high reasoning ability. For example, when an IA2 sequen-
tially indicated cubes of different colors, an experimental subject inferred that "IA2 
does not know the word representing cube" from the behavior of IA2. However, there 
were some ineffectual teachings, such as an experimental subject taught words that 
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Fig. 8.  The number of words correctly acquired by IA2 or the LA,when humans are teachers 

had already been acquired by an IA, so the difference between human's teachings and 
IA's teachings is smaller than that of Section 4.1.2. 

5   Conclusion 

In this paper, we proposed a novel method for dialog strategy acquisition that uses the 
counterpart's comprehension level estimated from the agent's facial expressions and 
utterances. The experimental results from investigating the interaction between two 
IAs showed that both IAs can acquire efficient strategies according to their own initial 
knowledge. The actions of IAs are effectively selected by the strategies according to 
the estimated knowledge of the counterpart. Moreover, in the experiments of human–
IA interaction, the acquired strategies of IAs are also effective for humans. 

In a future work, in order to make IAs acquire both strategies of teaching and 
learning, we will conduct experiments in which initial knowledge is given to both 
IAs, as well as analyze the detailed human behavior in human–IA interaction and use 
the findings to study the IA’s dialog strategy. 
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Abstract. We present a neural-competitive learning model of language
evolution in which several symbol sequences compete to signify a given
propositional meaning. Both symbol sequences and propositional mean-
ings are represented by high-dimensional vectors of real numbers. A
neural network learns to map between the distributed representations of
the symbol sequences and the distributed representations of the proposi-
tions. Unlike previous neural network models of language evolution, our
model uses a Kohonen Self-Organizing Map with unsupervised learning,
thereby avoiding the computational slowdown and biological implausi-
bility of back-propagation networks and the lack of scalability associated
with Hebbian-learning networks. After several evolutionary generations,
the network develops systematically regular mappings between meanings
and sequences, of the sort traditionally associated with symbolic gram-
mars. Because of the potential of neural-like representations for address-
ing the symbol-grounding problem, this sort of model holds a good deal
of promise as a new explanatory mechanism for both language evolution
and acquisition.

1 Introduction

Neural networks hold a great deal of appeal as models of language evolution. As
an alternative to traditional “symbol-crunching” systems like grammars, neural
nets offer greater biological plausibility – especially with regard to the processing
of temporal sequences, limits on structural complexity of meanings, and other
“performance” phenomena of real human language. Harnad [1], among others,
has argued for the use of neural network models as a solution to the symbol
grounding problem, as posed by Searle’s famous Chinese Room argument. [2]

A few researchers have successfully used neural networks in modeling lan-
guage evolution. Typically this work has focused on the emergence of mappings
between small, simple meanings and sequences, showing how systematic regu-
larities can emerge in these mappings without using an explicit grammar. A
common approach is to embed a neural network in each member of a population
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of agents, who participate in a communication game over some number of iter-
ations. Batali [3], showed how the back-propagation algorithm [4] can be used
to train a population of recurrent neural networks to map from input sequences
(abc, cda) to simple propositional meanings (you hungry, me scared). Eventually
the agents developed communication systems with structural regularities remi-
niscent of those in human languages, with a given symbol or sequence of symbols
being used to represent the same concept in different contexts.

In a more recent paper, Smith [5] shows how a variant of Hebbian (simple
associative) learning can be used to evolve mappings between simple meanings
and signals. Each meaning and signal is an unstructured bit vector orthogonal
to all the others. By exploring the set of possible learning rules relating signal
bit values to meaning bit values, Smith shows how the “innate endowment” and
learning biases of communicative agents can result in optimal communication,
through a purely cultural (non-genetic) process.

Both of these projects show how insight into language evolution can be gained
from even a simple network model. With both projects, however, it is not clear
whether or how these results can be extended to more complicated language struc-
tures. From a representational perspective, it is not clear how to extend simple
binary coding schemes to more complex meanings – especially, how such schemes
could represent hierarchical, recursive structures of the sort that appear to un-
derly language and thought. [6]. From an algorithmic perspective, both back-
propagation and Hebbian learning pose problems. In addition to being criticized
as biologically implausible [7], back-propagation is a computationally intensive,
iterative algorithm whose ability to scale up to larger languages is questionable.
As for Hebbian learning, the limitations created by the requirement of mutually
orthogonal vectors [8] make it unlikely that these sorts of networks would scale
up to more realistic, structured representations of meanings and signals.1

In the remainder of this paper, we describe a model using a neurally plausible
representation of meanings and sequences, and a neural network algorithm for
mapping between them, that has the potential to overcome these limitations.
We conclude by with some experimental results that validate the ability of this
model to learn rule-like mappings, without recourse to grammar.

2 Distributed Representations

In contrast to the the “atomic” or “localist” representations employed in tradi-
tional cognitive science, a distributed representation is one in which “each entity
is represented by a pattern of activity distributed over many computing ele-
ments, and each computing element is involved in representing many different
entities”. [10] Most commonly, the pattern of activity is represented by a vector
of real values in some fixed interval, typically [0, 1] or [−1, 1]. Proponents of

1 Subsequent work by Smith et al. [9] uses Hebbian associative networks to map struc-
tured meanings to structured signals; however, the representation scheme used in
that work makes the size of the networks grow explosively as more structure is
added, making it impractical for more than very simple structures.
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this sort of representations have cited several advantages over traditional sym-
bolic representation. These include robustness to noise (“graceful degradation”)
and content-addressability (the ability to retrieve items by some feature of their
content, rather than an arbitrary address), which are properties of human intel-
ligence seen as lacking in traditional symbolic models. [8]

Distributed representations of meaning have appeared in a variety of contexts
in contemporary AI and cognitive science. Most commonly they are used to model
the meanings of individual words. In a widely cited paper, Elman [11] demon-
strated the ability of a simple recurrent neural network to form richly structured
distributed representations of word meaning, based on the task of predicting the
next word in a sentence. More recently, the method of Latent Semantic Analysis
[12] has used distributed representations successfully in a wide variety of practical
AI tasks. On a more theoretical level, Gärdenfors [13] has elaborated a framework
in which conceptual meanings are analyzed as regions in a vector space. A very
useful feature of all such models is that the vector representations of similar struc-
tures end up close together in the vector space, as determined by a common metric
like Euclidean distance, dot product, or cosine.

Although these sorts of distributed representations can be seen as encoding
structure, it is structure of a categorical, rather than propositional or sentential,
nature. As pointed out by Steedman [14], such structure corresponds more to
part-of-speech information than to the propositional structures used in AI, logic,
and linguistics. For example, given distributed representations of the concepts
man, tiger, and chases, simply adding or multiplying the representations together
gives no way to extract the difference between the propositions chases(man,tiger)
and chases(tiger,man); but these propositions contrast in the assignment of the
agent and patient roles to each of the two arguments.

Partly in response to such criticisms, several researchers have developed dis-
tributed representations of structured meaning. These include the Holographic
Reduced Representations (HRR) of Plate [15], the Binary Spatter Codes of Kan-
erva [16], the Context-dependent Thinning Networks of Rachkovskij [17], and the
Multiplicative Binding Networks of Gayler. [18] All these architectures use vec-
tors of real (or binary) values with high dimensionality (typically 1000 or more
dimensions), a binding operation to join vectors representing roles (agent, patient)
with those representing fillers (man, tiger), and a combinatory operation to build
meaningful structures out of the bound elements.2 Crucially, these operations
do not increase the size of the representations, which was a problem in earlier
distributed representation binding schemes. [20]

In Plate’s HRR framework, used in our experiments reported below, the bind-
ing operation is circular convolution: given vectors c̃ and x̃ of dimension n, their
circular convolution “trace vector” t̃ = c̃ � x̃ is defined as

tj =
n−1∑
k=0

ckxj−k (1)

2 Pollack’s Recursive Auto-Associative Memory [19] is a close cousin of such represen-
tations, using relatively low-dimensional vectors for fillers, and matrices for roles.
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for j = 0 to n− 1, subscripts modulo-n. A noisy version ỹ of x̃ can be recovered
by circular correlation: ỹ = c̃ #© t̃ ,defined as

yj =
n−1∑
k=0

cktk+j (2)

for j = 0 to n − 1, subscripts modulo-n. The distributed vector representation
of a proposition like chases(tiger,man) can then be computed as

R(chases(tiger, man)) = R(chases) + R(tiger) � R(agent) + R(man) � R(patient) (3)

where R(symbol) is the distributed representation of symbol. The representation
in (3) encodes both the fact that the proposition is about chasing (first term) and
the fact that it is the tiger doing the chasing and the man being chased (last two
terms). To query, e.g., who did the chasing in this representation, we correlate the
sum in (3) with R(agent), and compare the noisy result with each of the original
symbol vectors, to see which is closest (the so-called “cleanup” operation). As
long as the original vectors are chosen randomly (zero mean, variance 1/n), and
given a sufficiently large n, this scheme can be used to encode arbitrarily complex
structures like knows(man, believes(woman, chases(tiger, man))).

For language evolution research, we also need a way of representing symbol
sequences. Plate [15] describes several ways of representing sequences with HRR.
In the work described below, we use the method of positional cues, in which a
separate set of vectors p̃i encodes the position of each element in the sequence
by means of the convolution operation:

R(〈a,b,c〉) = p̃1 � R(a) + p̃2 � R(b) + p̃3 � R(c) (4)

A noisy version of the ith sequence element can be recovered from the distributed
representation of the sequence by circular correlation with p̃i. For example:

R(a) ∼= p̃1 #© R(〈a,b,c〉) (5)

As with the distributed representations of concepts discussed in the previous
section, HRR and related coding schemes have the feature that the vector rep-
resentations of similar structures (chases(tiger,man), chases(lion,man)) end up close
together in the vector space. This fact is illustrated in Table 1, for a set of simple
propositions containing a predicate (arbitrarily denoted by p, q, and r) and one
argument (arbitrarily denoted by x, y, and z) . The same property holds for the
vector representations of similar sequences.

With efficient distributed representations of arbitrarily complex meanings and
signals, we arrive at the question of how to evolve mappings between the two.
An obvious approach would be to train a three-layer backpropagation network
to perform the mapping. This approach would however suffer from the problems
described in relation to backprop network earlier: training times can grow arbi-
trarily long, and the algorithm itself lacks biological plausibility. The following
section reviews the Kohonen Self-Organizing Map, the neural-net architecture
that we ended up choosing for this task.
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Table 1. Cosines between 1000-dimensional HRR’s of simple propositions

p(x) p(y) p(z) q(x) q(y) q(z) r(x) r(y) r(z)

p(x) 1.00
p(y) 0.32 1.00
p(z) 0.31 0.28 1.00
q(x) 0.71 0.04 0.03 1.00
q(y) 0.01 0.69 -0.01 0.32 1.00
q(z) 0.01 0.00 0.70 0.31 0.31 1.00
r(x) 0.72 0.06 0.04 0.70 0.03 0.02 1.00
r(y) 0.04 0.71 0.01 0.04 0.69 0.01 0.35 1.00
r(z) 0.04 0.02 0.71 0.03 0.01 0.70 0.33 0.32 1.00

3 Kohonen’s Self-Organizing Map

The Self-Organizing Map (SOM) of Kohonen [21] is an unsupervised neural
network learning method that can be used to reveal patterns of organization in a
data set. The data set X consists of vectors of a fixed dimensionality. The network
is typically organized into a two-dimensional grid Ui,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n
of nodes, each of which is associated with an initially random weight vector
w̃i,jof the same dimensionality as the members of X . On each learning iteration,
a vector x̃ is randomly chosen from the data set, and the node whose weight
vector is closest to this vector is considered the “winner” for that iteration. The
winning node’s weight vector is updated to move it closer to the vector picked
from the data set, as are the weight vectors of the winner’s grid neighbors. By
decreasing the neighborhood size with increasing iterations, the weight vectors
eventually settle into a reasonable representation of the data set.

Figure 1 shows a simple example of SOM learning. Here, the data set is
two-dimensional, so each grid point is associated with a two-dimensional weight
vector. The data set consists of points sampled uniformly from a ring shape.
Each grid node is plotted at the point corresponding to its weight vector, and is
connected to its north, south, east, and west neighbors by a line segment. The
figure shows that no matter how close together or far apart the weight vectors
are initially, they end up distributing themselves (and their associated nodes)
uniformly within the space enclosing the ring shape.

A common application of SOM is dimensionality reduction for data visualiza-
tion in two dimensions. There is, however, no restriction on the dimensionality
of the nodes U . In fact, the grid of nodes is itself a special case (discrete, two-
dimensional) of a continuous metric space, and the algorithm will work with any
U for which a neighborhood (distance) metric is defined. The Ui,j are replaced
with vectors ũi, 1 ≤ i ≤ n, and the index k of the winner ũk is defined as

k = argmin
i

|w̃i − x̃| (6)

where w̃i is the weight vector associated with ũi, and |x̃− ỹ| is the distance be-
tween x̃ and ỹ. Instead of updating the winner and the nodes in its neighborhood,
all nodes in the network are updated, with the size of the update determined by
distance from the winner:
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w̃i
t+1 ← w̃i

t + µtf(i, k, t)(x̃ − w̃i
t) (7)

where µt is a learning rate parameter, f is the neighborhood function

f(i, k, t) = e−|ũi−ũk|2/2σ2
t (8)

and σt is a neighborhood parameter. Both parameters decrease with time, allow-
ing the weights to settle into an approximate representation of the data set X .
In short, the SOM forms a regular topographic map [22] from one vector space to
another. Recent work in language evolution [23] has argued for the importance
of such maps as a key to understanding the ways in which languages develop
and change.
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Fig. 1. Two-dimensional SOM learning a ring shape. Final (T=100) configurations are
similar regardless of whether initial (T=0) weights are clustered close together (top)
or far apart (bottom).

With this broader understanding of SOM, it becomes possible to develop effi-
cient mappings between high-dimensional distributed representations of symbol
sequences and high-dimensional distributed representations of meanings. Each
meaning vector ũ can be associated with a weight vector w̃. The sequence vector
x̃ expressing ũ is then chosen as the member of the vector space X of possible
sequences that is closest to w̃. In the next section we describe an algorithm that
uses this scheme to evolve systematic, grammar-like mappings.
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4 Experiments

4.1 Learning a Simple Mapping

To explore the possibility of using an SOM to evolve systematic mappings be-
tween distributed representations of meanings and sequences, we started with
a simple model not explicitly involving agents or communication. We used the
small predicate/argument propositional meanings from Table 1, and symbol se-
quences of length two over the alphabet {a, b, c}. Meanings were represented as
1000-dimensional HRR trace vectors, and sequences as 1200-dimensional HRR
trace vectors. (These sizes were chosen arbitrarily, to show that the meaning
traces and sequence traces need not agree in size.) Each 1000-dimensional mean-
ing trace was associated with an initially random 1200-dimensional weight vec-
tor, which was modified according to Equations 6 - 8, with the meaning vectors
being the U , the sequence vectors the X , and the weights between them the W .
The learning rate µt was scaled linearly from 0.5 to 0.1, and the neighborhood
value σt from 3.0 to 0.1. Our goal was to see what sorts of meaning-sequence
mappings emerged.

Table 2 shows the results of eight different experimental runs of 500 SOM
learning iterations each. In each row i, the first column shows the ith propo-
sitional meaning. The second column shows the “winning” sequence for that
meaning at the start of the experimental run; i.e., sequence j whose sequence
trace x̃j is closest to the weights w̃i for that meaning:

j = argmin
k

|w̃i − x̃k| (9)

The remaining columns show the winning sequences at the end of eight differ-
ent experimental runs. As Table 2 indicates, the meaning-sequence mappings
changed from being highly non-systematic at the beginning of the experiment
to maximally systematic at the end, for all but one of the eight runs reported.
Each randomly initialized SOM learned to map from a given predicate (p, q, or
r) to a single symbol (a, b, or c), and from a given argument (x, y, or z) to a
single symbol. For example, the last column in the table shows a “verb-final”
mapping in which the symbol corresponding to the predicate comes second, the

Table 2. Results of First Experiment

Typical Initial
Meaning Sequences Final Sequences

p(x) ac bb ca cb cc ac cc ba ba
p(y) ac cb ba bb ac cc bb aa ca
p(z) ac ab aa ab bc bc ba ca aa
q(x) ac bc cc cc ca ab cc bc bc
q(y) ac cc bc bc aa cb bc ac cc
q(z) ac ac ac ac ba bb ca cc ac
r(x) ca ba cb ca cb aa ac bb bb
r(y) ac ca bb ba ab ca ab ab cb
r(z) bc aa ab aa bb ba aa cb ab
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symbol corresponding to the argument comes first, and the systematic mappings
are (p/a, q/c, r/b) for predicates and (x/b, y/c, z/a) for arguments. These re-
sults show that our approach can produce systematic mappings, for this small
learning task at least.

4.2 Opening the Bottleneck

The mappings learned in the previous experiment are, for the most part, com-
positional : a given meaning component (predicate or argument) is always repre-
sented by the same symbol, independent of where it appears. No two predicates
are represented by the same symbol, nor are any two arguments. This situa-
tion led us to ask whether our HRR/SOM learning model has a bias toward
compositionality, or whether there is some other influence at work.

To examine this issue, we repeated the first experiment with an alphabet of
six symbols instead of three. If our model were biased toward maximal compo-
sitionality, we would expect to end up with a one-to-one mapping between each
meaning element and each sequence symbol. After trying a number of parameter
settings, we were unable to obtain compositional mappings for this experimental
setup. An example final, non-compositional sequence is shown in Table 3. A look

Table 3. Lack of Compositionality

Typical Initial Typical Final
Meaning Sequences Sequences

p(x) ee af
p(y) ee fd
p(z) ee ed
q(x) ee ab
q(y) ff cc
q(z) be dd
r(x) ee ba
r(y) de cd
r(z) be dc

back at Figure 1 suggests a possible explanation for this lack of compositionality.
This figure shows that, regardless of the initial weights, SOM learning produces
a final weight configuration that is evenly distributed around the space defined
by the input data. In the first experiment, the number of sequences was identi-
cal to the number of meanings. Hence, there was no “room” in the input space
for the weights to expand, and this even distribution yielded a compositional
mapping. In the second experiment, there were four times as many sequences
(36) as meanings (nine). By distributing the meanings throughout the space of
sequences, the SOM produced a highly non-compositional mapping for this data
set.

This result may be seen as analogous to the bottleneck principle described by
Kirby [24], in which the constraints of cultural transmission favor the emergence
of languages describable by a small number of rules. The previous two experi-
ments show how the constraint imposed by using a smaller number of symbols
results in a similar outcome, using an entirely different computational substrate.
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4.3 Evolving Word-Order Regularities

With this understanding of our HRR/SOM model in mind, we turned our at-
tention to using the model to study specific phenomena. In a third experiment,
we used the model to explore the emergence of word-order regularities among
the subject, object, and verb in a simple model of sentence production. Based
on a data set used by Kirby [24], we constructed simple proposition meanings of
the form predicate(argument1, argument2), where predicate ranged over {loves,
hates, admires, sees, detests}, and each argument ranged over {john, mary, gavin, bill,
fred}. For the sake of clarity in comparing the relative order of subject and ob-
ject, we avoided reflexives, yielding 100 (5×5×4) propositional meanings. Using
the symbol set {l, h, a, s, d, j, m, g, b, f}, we constructed all six permutations of
compositional three-symbol “sentences” for each such meaning; for example, the
proposition loves(john,mary) yielded the possible sentences {ljm, lmj, jlm, jml, mjl,
mlj}. Meanings and sequences were both represented by 2000-dimensional HRR
trace vectors. Unlike the previous two experiments, this experiment associated
the weight vectors to the sequences, rather than the meanings, resulting in a
situation in which six possible sequences were competing for each meaning. The
winner of each competition was chosen via Equation 6, after which the weights
for all 600 sequences (not just the six competitors) were updated via Equation 7.
For this experiment the learning rate µt decreased linearly from 0.125 down to
0.025.

The results of this experiment were quite consistent: over 500 iterations of
the SOM learning algorithm, the astronomically large set of possible mappings
quickly converged to one of the six possible word orders relating predicates and
arguments to verbs, subjects, and objects (VSO, VOS, SVO, SOV, OSV, OVS).
Figure 2 shows a sample experimental run, where the model converged to SVO
word order. The figure shows the fraction per 10 iterations of each kind of
mapping. Note that the SVO order becomes dominant before 50 iterations have
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Fig. 2. Sample run for the third experiment, showing fraction of mappings with given
word order against iterations, in steps of 10
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passed, meaning that the model begins to generalize before fewer than half of
the possible meanings have been presented to it.

4.4 An Agent-Based Approach

Several recent approaches to the evolution of language have used a population
of agents as a basis for exploring the emergence of systematic communication.
[3, 25, 26, 27]. Such models are based on the idea that language evolved to
accommodate the transmission of information, which although not universally
accepted [28], holds a great deal of intuitive appeal. This situation led us to
wonder whether neural HRR/SOM model could be used as the computational
”core” of an agent-based approach.

To explore this issue, we adapted a simple two-agent ”Iterated Learning
Model” (ILM) developed by on of the authors. [24] This model employs a cultural
transmission paradigm [29] in which biological evolution – specifically, adaptive
fitness – plays no role. In ILM, the population consists of an idealized speaker
and an idealized learner. On each cultural ”generation”, the speaker must pro-
duce some pre-determined number of utterances. Each utterance consists of a
propositional meaning (of the sort described above), and a symbol string gen-
erated on the basis the speaker’s (initially empty) grammar. If the speaker’s
grammar cannot generate a string for that meaning, the speaker invents a string
at random, and uses it as input to a grammar-induction algorithm that ac-
commodates its current grammar to the new meaning/string pair. The learner
”hears” the meaning/string utterance produced by the speaker, and behaves in a
parallel fashion: if it cannot parse the string using its (initially empty) grammar,
it uses the meaning/string as input to grammatical induction. At the end of each
generation, the speaker ”dies”, the learner becomes the new speaker, and a new
learner with an empty grammar is added to the simulation. As mentioned above,
an important result of grammar-based ILM was that when the number of utter-
ances per generation was constrained to be less than the total number possible,
the resulting ”transmission bottleneck” led to the emergence of compositional
grammars.

In our adaptation of the model, the grammar was replaced by our HRR/SOM
model, and grammar induction by SOM learning. To produce a string for a given
meaning, the speaker used the string whose weight vector was closest to the HRR
representation of that meaning (Equation 6). The weights for all strings were
then modified using Equation 7. Unlike the original ILM work [24], there was no
sense of invention or ability to generate/parse a given string; the speaker always
used Equation 6 to generate a string for a given meaning, and the learner always
accommodated this meaning/string pair via Equation 7. As in [24], however, the
first speaker and each new learner lacked any ”knowledge” of language, which in
this new experiment meant random weights on each string. The identity of the
meaning/string pair was the only information shared by the speaker and learner:
the speaker’s initial random weights and HRR vectors were not the same as any
learner’s, and each new learner was given a new set of random weights and HRR
vectors.
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The data set for this experiment was the same as for the previous one, consist-
ing of 100 propositional meanings of the form predicate(argument1, argument2),
with six different length-three symbol strings possible for each. Again, and unlike
[24], our goal was not to test for the emergence of compositionality. Instead, we
wanted to see whether the emergence of consistent word order shown by our model
would transfer to an agent-based, information-transmission paradigm. Following
[24], each speaker produced 50 utterance per generation, meaning that the listener
was exposed to less than the full range of possible meanings.

Like the previous experiment, the results of this experiment were quite consis-
tent. After five to 10 generations, a single word order emerged for all meanings. 3

As in our previous experiment, the final word order began to dominate the oth-
ers early on, typically by the end of the second generation. Like [5], these results
show that grammars are not the only computational mechanism by which lin-
guistic regularity can be acquired in an iterated cultural learning model.

4.5 Generalizing from Sparse Data

Perhaps the greatest challenge in modeling language emergence comes from the
so-called ”poverty of the stimulus” problem. The language learner, presented
with a small, finite set of exemplars, must generalize to the patterns of the full
language. [30] To explore the ability of our model to generalize based on sparse
data, we conducted the following experiment.

Using the 100 utterances from the previous two experiments, we trained the
SOM to map from a given meaning to the corresponding VSO sequence. For
example, the meaning trace for loves(john,mary) was mapped to the sequence
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Fig. 3. Fraction of correct mappings versus training set size. Results for each condition
are averaged over five trials.

3 This is far fewer than the 1000 generations used in [24]; the difference is due to the
much more constrained learning task employed here.
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trace for ljm, detests(gavin,bill) to dgb, etc. The goal was to see what fraction of
the total utterances would be correctly generalized, based on the fraction of
training examples presented. Training examples were picked at random, starting
with 10 percent of the training set and continuing up through 100 percent. Each
example was presented to the network five times.

Figure 3 shows the results of this experiment, averaged over five trials for
each training condition. Like Figure 2, this figure suggests that our model has
the potential to generalize from incomplete information. After seeing 50 percent
of the mappings, the model can generalize to another 30 percent, and it can
generalize to the full set after seeing about 85 percent of the data. Although it
would be premature to make any broad claims about this ability, the data from
this experiment show that the model cannot simply be ”memorizing” particular
meaning/sequence mappings.

5 Discussion

The work described here represents a very preliminary attempt to provide a
neurally plausible alternative to traditional grammars as a basis for research in
language evolution and development. Our model learns to map between high-
dimensional, distributed representations of propositional meanings and symbol
sequences, without using a computationally expensive and biologically implau-
sible algorithm like back-propagation.

Our goal is not to supplant existing approaches to explaining the development
of language. Indeed, the very nature of our model, in which symbol sequences
compete for the propositional meanings that they signify, is very much in the
spirit of several modern approaches to these issues. The most recent and ob-
vious of these is the evolutionary approach of Croft [31], in which individual
“linguemes” (phonemes, morphemes, words, phrases, collocations) are viewed as
competing for usage in a speech community. Alternatively, our model could be
viewed in the context of an individual language learner who, presented with a
small, finite set of exemplars, must generalize to the patterns of the full lan-
guage. [30] The results from Section 4.5 suggest this sort of capability. Finally,
as our fourth experiments shows, the model is easily embedded in an agent-
based setting involving an explicit teacher/learner interaction. What we hope to
add to these endeavors is a sense of how the symbolic representations used in
all of them might be grounded in a neurally plausible model of representation.
By using these sorts of representations throughout – instead of merely at the
lowest sensory/motor level – we avoid the grounding problem associated with
traditional symbol systems.

As with any new model, however, we have of necessity ignored a number of
crucial issues. Most glaring of these is perhaps our treatment of sequences, in
which we encode the absolute position of each symbol. A more psychologically
realistic model would focus on the relative position of symbols, thereby support-
ing the kinds of phenomena found in serial-order experiments. [32] Nor have we
dealt in any way with recursion, a property generally considered to be part of the
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minimally adequate characterization of human language. [33] As noted above,
a desirable feature of the Holographic Reduced Representations employed here
is their ability to encode recursive structures of arbitrary complexity. Another
possible direction for this research would therefore involve exploring the kinds
of mappings that emerge from the need to communicate recursive propositional
meanings with symbol sequences, using the HRR/SOM model.

Finally, as with any model of evolution or acquisition, we arrive at the ques-
tion of what exactly our model is learning. As we have shown in our experiments,
the model is learning more than a simple mapping from representations of whole
meanings to representations of whole sequences. Instead, it learns, for example,
that a string beginning with a d corresponds to a proposition whose predicate is
detests, and that a string with a j in the second position corresponds to a propo-
sition whose first argument is john. As it stands, this sort of mapping is not much
different from a mapping between two types of coding of sequences. It has been
known for quite some time that mere sequence information is inadequate to cap-
ture the relationships among meaning-bearing elements of phrases and sentences
[34]; hence the popularity of context-free grammars and other mechanisms for
capturing dependencies over arbitrary distances. An important next step for our
research would therefore be to come up with a more plausible HRR representa-
tion of word-order information. Following [35], Plate [15] presents a method of
HRR sequence encoding that incorporates relative position as well as absolute
position. Such a representation might allow the SOM to focus on relative, as
opposed to absolute, order, thereby supporting long-distance dependencies.
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Children learn language from what they hear. In dispute is what mechanisms
they bring to this task. Clearly some of these mechanisms have evolved to support
the human speech capacity but this leaves a wide field of possibilities open. The
question I will address in my paper is whether we need to postulate an innate
syntactic module that has evolved to make the learning of language structure
possible. I will suggest that more general human social and cognitive capacities
may be all that is needed to support the learning of syntactic structure.

I start by briefly discussing precursors to language development that are devel-
oping in the first year of life: some of these are probably primate-wide skills, for
instance, the capacity for distributional learning (e.g., [1]), others are probably in
large part, human-specific, for instance the highly sophisticated socio-cognitive
skills that one-year-olds already show (e.g., [2]).

Next, I outline an approach to language development that involves the learn-
ing of constructional schemas, both specific and abstract. Children are thought
to start out with concrete pieces of language and to gradually develop more
schematic constructions. All constructions are mappings between the form of
the construction and a meaning, though this may not be either the full mean-
ing or the full construction of the adult grammar. For instance a child may say
Whats that? for months, perhaps as a request for the name of an object or
perhaps as a way of getting attention without connecting the clitic -s to any
representation of the verb, to BE. As their language develops children (1) learn
more constructions (2) develop slots in constructions as they notice variation
(3) abstract a more schematic meaning for each slot, making the constructions
more abstract (4) add more slots to constructions making them more complex
and (5) relate constructions to each other through distributional and analogical
processes.

Many previous studies of language development have argued that children
could not learn from the input because there is no surface guide to underlying
constituency. In support of this, they claim that there is empirical evidence
that childrens grammars are abstract from the outset. There are two major
problems with assessing such claims. First, until recently, most empirical studies
of language development have been conducted on very thinly sampled data. This
makes it difficult to know whether either relatively infrequent utterances or the
complete absence of an utterance is due to chance sampling or is really indicative
of development [3]. In what follows, I report research that has largely been
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conducted using dense database corpora that are orders of magnitude greater
than most previous corpora.

The second problem with assessing nativist-linguistic claims is that childrens
language (and that of the adults speaking to them) is often analysed in terms of
the abstract categories of grammar, rather than in terms of the frequency and
contexts of particular forms (morphemes, words or strings). I will demonstrate
that if the utterances of children and adults are analysed at a lexically-specific
level there are extremely strong relationships between the input and childrens
own development and that satisfactory accounts can be given for many phenom-
ena in language acquisition research (for instance, systematic errors) that have
previously been explained in terms of pre-existing abstract syntactic knowledge.

The presentation of data falls into four parts. The first part is concerned with
how children might build novel utterances from what they hear. Using a method-
ology that we have developed which we call Traceback, I assess the ways in which
children could build utterances out of previously learned strings [4,5] and show
how, with development, slots in constructions start to become more abstract. In
this section I also present a study showing that English Child Directed Speech
is very lexically restricted and that this is likely to be where childrens early
lexically-based schemas come from [6]. I report briefly some current research on
German and Russian CDS which, contrary to what one might expect from for-
mal grammatical descriptions, also shows high degrees of lexical restrictiveness
at the beginnings of maternal utterances [7].

However, it is important to note that while childrens language development
depends crucially on the nature of the input, it is not a simple mapping from the
input (for instance, the frequency of each construction) to the childs linguistic
representations. This is because children build up an inventory of constructions,
each a mapping of form to meaning. Childrens communicative needs and cogni-
tive understanding play a part in this as the learning process identifies emergent
forms in constructions and seeks to attach meaning to them. In the second em-
pirical part of the paper I will demonstrate this by reference to a dense database
study of the development of negation [8] and a study of auxiliary development [9].

Another reason why children are not simple frequency matchers is because
constructions interconnect in ways that mean that the developing system will
not be a proper subset of the adult system, but one with its own transitory states
and developmental trajectory. In the third empirical section, I discuss two studies
that illustrate this, one on the development of verb argument structure [10]
and the other a dense database study of the development of German passive
constructions [11].

In the final empirical part of the paper, I discuss data relevant to two criti-
cisms often levelled at the usage-based approach. Firstly, it is correctly pointed
out that the results come largely from English-speaking childrens acquisition
and English is a very untypical language with highly restrictive syntactic word
order and virtually no inflectional morphology. There are a number of reports
in the literature of early and relatively error-free acquisition of morphology in
morphologically-richer languages. However recent research by Aguado-Orea [12]
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shows that if Spanish childrens verbal morphology is analysed at the level of
specific inflections, it shows high error rates in some parts of the system and
that this is closely related to the frequency of these forms in the input. A second
criticism is that the dependence of the usage-based approach on frequency means
that it cannot explain the sorts of systematic errors that children make with syn-
tactically complex constructions such non-inversion and double tense marking
errors in English. If children were learning the correct strings from what they
hear, why would they make these errors? A recent study by Rowland [13] has
shown that, in fact, these errors can be explained as a function of the frequency
with which particular questions occur in the input if these are analysed lexically:
highly frequent lexical strings in the input are protected from error in the childs
system; errors occur when the child has less evidence as to what the correct
string should be.

I conclude the paper by suggesting that the usage-based approach is by far the
most promising way of making the study of language development a tractable
scientific problem but that there is still a long way to go. I briefly raise some of
the major challenges. These include the learning of complex morphological sys-
tems and the mechanisms underlying generalisation. Solving these problems will
require considerable scientific ingenuity as well as contributions from modelling
and artificial language research and the continued development of naturalistic
and experimental methodologies.

In language development children build their novel utterances and their more
advanced linguistic representations out of old parts [14] — here indeed is a
parallel with how the evolution of language must have proceeded.
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Abstract. According to the functional approach to language evolu-
tion (inspired by cognitive linguistics and construction grammar), gram-
mar arises to deal with issues in communication among autonomous
agents, particularly maximisation of communicative success and expres-
sive power and minimisation of cognitive effort. Experiments in the emer-
gence of grammar should hence start from a simulation of communicative
exchanges between embodied agents, and then show how a particular is-
sue that arises can be solved or partially solved by introducing more
grammar. This paper shows a case study of this approach, focusing on
the issue of search during parsing. Multiple hypotheses arise in parsing
when the same syntactic pattern can be used for multiple purposes or
when one syntactic pattern partly overlaps with another one. It is well
known that syntactic ambiguity rapidly leads to combinatorial explosions
and hence an increase in memory use and processing power, possibly to
a point where the sentence can no longer be handled. Additional gram-
mar, such as syntactic or semantic subcategorisation or word order and
agreement constraints can help to dampen search because it provides in-
formation to the hearer which hypotheses are the most likely. The paper
shows an operational experiment where avoiding search is used as the
driver for the introduction and negotiation of syntax. The experiment is
also a demonstration of how Fluid Construction Grammar is well suited
for experiments in language evolution.

1 Introduction

The research reported in this paper is part of a growing body of research that
tries to show through careful computational and robotic experiments how com-
munication systems with properties similar to those of human natural languages
may emerge in populations of agents. (See recent overviews in [1], [2], and oth-
ers) Many aspects of language are being studied, ranging from the origins of
sound systems, the origins of lexicons, the co-evolution of lexicons with ontolo-
gies usable for categorisation, etc. In this paper we focus on issues related to
grammar.

We will adopt a functional view on the evolution of language, compatible with
cognitive linguistics approaches [3] and construction grammar [4], as opposed to
a structuralist view, familiar from generative grammar [5]. Broadly speaking,
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the functional view argues that syntax is motivated by attempts to solve some
aspect of the communication problem, whereas in a structuralist view, syntax
is not motivated by communicative function. These two views lead to different
models of language evolution. Genetic and cultural transmission models such as
those of Nowak, et.al. [6] or most models based on the Iterated Learning frame-
work [7] illustrate a structuralist view. Agents introduce hierarchical structure
as they induce (or inherit after mutation) the language of their parent, and this
structure is reused when they produce language themselves. But the structure
is not motivated by issues that arise when attempting to communicate. Indeed
communication itself is not modeled, only the transmission process. The nature
of the resulting grammar is therefore solely due to the nature of the learning
algorithm (e.g. induction based on minimal description length) and chance fac-
tors. Although this is probably a reasonable model for language transmission it
makes it hard to understand why language is the way it is and how the intricate
structure we observe might have arisen.

In this paper we explore a functional view on language evolution, which means
that features of grammar are supposed to emerge because they deal with a par-
ticular issue that embodied communicating agents necessarily have to solve. This
implies that we must first create situations in which embodied agents encounter
certain difficult issues which prevent them from communicating successfully with
reasonable cognitive effort, and then formulate repair strategies for dealing with
these issues that lead to increased grammaticality and a better communication
system.

Our team has already reported several very concrete operational examples of
this approach. Steels [8] argued that grammar is needed to link partial mean-
ings introduced by different lexical items and showed computational simulations
which use the damping of equalities between variables (which arise when partial
meanings are only implicitly linked to each other) as main driver for introducing
case grammar [9]. De Beule and Bergen [10] showed how compositional coding
(as opposed to holistic coding) emerges when there is a sufficiently large fraction
of structured meanings that need to be expressed. When agents reuse existing
expressions, communicative success increases more rapidly and cognitive load
decreases as they need smaller lexicons. Steels and Loetzsch [11] argued that
embodied communication involving spatial relations (like left or right) requires
recruiting the ability to adopt different perspectives and communicating explic-
itly the perspective from which a scene is described because it substantially
increases communicative success and decreases the cognitive effort of the agents.

In this paper, we report on another case study, now focusing on the issue
of combinatorial explosions in parsing. Multiple hypotheses in parsing arise un-
avoidably as soon as the same syntactic pattern is re-used as part of a bigger
structure. Moreover natural languages re-use the same syntactic pattern with
different levels of detail. For example, it is possible to build a noun phrase with
just an article and a noun (“the box”) but also with an article, an adjective and
a noun (“the big box”), or two noun phrases combined with a preposition (“a
small box next to the orange ball”), and so on. Unless there is additional syntax,
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“a” or “the” in the latter example can both be combined with either “box” or
“ball”, and “big” or “orange” can equally be combined with both nouns and
the phrase can also be parsed as “the orange ball next to a small box”. Clearly
languages introduce syntactic means to restrict the set of possible combinations
which otherwise would quickly run out of hand. In English, this additional syn-
tax is usually based on word order, but other languages may use other syntactic
devices such as agreement between number and gender.

This suggests that detection of parsing ambiguity can be used as a motor that
drives the introduction of syntax. The speaker can re-enter the utterance that
he has just produced to detect ambiguity and then add additional constraints
if there is a risk of combinatorial explosion. The hearer can parse the utterance
produced by the speaker, ‘bite the bullet‘ to arrive at an interpretation even if
it involves search, but then use the syntactic sugar that the speaker might have
introduced as a way to avoid that search in the future. This is precisely the
repair strategy that we have implemented and report on in this paper.

The rest of the paper describes the experimental set-up, how failure or cog-
nitive strain is detected, the repair strategies, and the effect of their application
on the communicative success and cognitive effort of language users. The exper-
iments rest on highly sophisticated technical tools contributed by many other
members of our team (see acknowledgement). Lexicon and grammar use the
Fluid Construction Grammar (FCG) framework, which is a new HPSG-style im-
plementation of construction grammar [12]. An implementation on a LISP sub-
strate has been released for free download through http://arti.vub.ac.be/FCG/.
The technical part of this paper assumes some familiarity with FCG, and in par-
ticular the way that hierarchy is handled using the J-operator (see [13]). Finally,
semantic aspects are handled through grounded procedural semantics based
on a constraint language called the Incremental Recruitment Language (IRL)
(see [14]).

2 Modeling Communication

It has been well documented that the ability to establish a joint attention frame
is an important prerequisite for human-like communication [15]. A joint atten-
tion frame is only possible when agents share motives and communicative goals
and find themselves in the same (physical) situation in which they can estab-
lish joint attention to the same objects or aspects of the situation. We achieve
these prerequisites by carefully constructing a language game, which is highly
constrained routinised interaction between agents. The game takes place in a
physically shared environment and shared motives and communicative goals are
part of the scripts through which these robots interact with each other in this
environment. For example, two robots are both paying attention to an orange
ball that is pushed around by an experimenter and they describe how the current
movement of the ball is different from previous events [11] (see figure 1 bottom).

To achieve a communicative goal, the speaker must first conceptualise what to
say and this must be based on a perception of the world as experienced through
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Fig. 1. Typical experimental setup in our language game experiments. The bottom
shows two robots moving around in an environment that contains balls and boxes. The
robots are equipped with a complex sensory-motor system, able to detect the objects
and build an analog world model of their location and trajectories. The top shows
objects being detected (left) and a ball trajectory (right) as seen by the robot on the
right.

the agent’s sensori-motor system. The agent’s world models in our experiments
are analog and based on direct output of sensors and actuators (as shown in
figure 1 top). Often it is assumed that there is a simple straightforward way to
transform a non-symbolic world model into a categorical situation model, which
is a representation of the world in the form of facts in some variant of predi-
cate calculus however we believe that this assumption is not realistic. Instead
we have adopted a ’procedural semantics’ view [16] in which the meaning of a
phrase is not an expression to be matched against a situation model, but a pro-
gram to perform the necessary categorisations and conceptualisations in order to
achieve specific communicative goals like reference. Conceptualising what to say
then becomes a planning process and interpretation is equal to running the pro-
grams reconstructed from parsing a sentence. We call these meanings ’semantic
programs’.

To operationalise this procedural semantics, our team has designed and imple-
mented a constraint propagation language IRL (Incremental Recruitment Lan-
guage) [14]. The primitive constraints are cognitive operations like filtering the
set of objects in the world model with an image schema, taking the intersection
of two sets, checking whether a certain event fits with the dynamical behavior
of the objects in a particular situation, etc. A simple example of a constraint
network in IRL-notation is as follows (no control flow is expressed):

1. (external-context ?s1) ; ?s1 is the current context
2. (filter-set-prototype ?s2 ?s1 ?p1); retain elements of ?s2 matching ?p1
3. (prototype ?p1 [box]) ; introduce prototype to be used
4. (unique-element ?o1 ?s2) ; ?o1 is the unique element from s2
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All symbols preceded by question marks are variables. ?o1 will be bound to
an object in the world model, ?s1 and ?s2 will be bound to sets of objects, and
?p1 is bound to a prototype or image schema that is used to filter the set of
objects in the context (?s1). The resulting set (?s2) is assumed to contain only
a unique element (?o1).

Constraints are exercised until the possible bindings of variables are restricted
as much as possible, ideally to single choices. The constraint networks operate
in different directions for conceptualisation and for interpretation. For example,
in the phrase “the box” the hearer is given a prototype [box] and uses it to
classify the objects in the world model, perhaps by a nearest neighbor match
with the prototype. But in conceptualising, the speaker must find a suitable
prototype, so that if this prototype is used, the hearer will be able to find back
a set containing the referent. The constraints are not only able to perform a
particular operation over the world model, such as categorising a set of visual
stimuli in terms of color categories, but also extend the available repertoire (the
ontology) of the agent. In other words, constraints can invent new categories,
adjust categories, introduce new prototypes, etc. This way the acquisition of a
conceptual repertoire is completely integrated in the process of conceptualising
and interpreting language and it is therefore possible to have a strong interaction
between the two. IRL features mechanisms to find a network that is adequate for
achieving a particular communicative goal and chunking found solutions so that
they can be reused later. In multi-agent experiments, each agent builds up his
own repertoire of composite constraints and ontologies and they get coordinated
due to alignment.

The next task of the speaker is to transform a constraint network into a lan-
guage utterance using the lexical and grammatical constructions available in his
inventory. We have adopted the perspective of construction grammar [17], [18]
and our team has designed and implemented a new formalism known as Fluid
Construction Grammar (FCG). Construction grammar assumes that every rule
in the grammar has both a semantic and a syntactic pole. This contrasts with
a (generative) constituent structure grammar that specifies only syntax, and se-
mantics is supposed to be defined separately by translation rules. The semantic
pole of a construction specifies how meaning has to be built up in parsing or de-
composed in production, and the syntactic pole how the form has to be analysed
in parsing or built in production. An important feature of FCG is that rules are
truly bi-directional. The same rule can be used both for parsing and produc-
tion, even if it involves hierarchy ([13]). The syntactic and semantic structure
being built during parsing and production takes the form of feature structures
and unify and merge are the basic operations that are used for expanding these
feature structures through the application of rules, similar to widely used HPSG
frameworks [19].

There is a systematic correspondence between constraint networks and gram-
mar (explained in more detail in [20]) in the sense that (1) lexical items introduce
the semantic objects used by constraints (for example prototypes, relations, cat-
egories, etc.), (2) first order constructions specify how these items are used, and
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(3) higher order constructions combine these and establish linking of variables
between them. We illustrate this with hand-coded examples because they make
it easier to understand the underlying ideas, but the agents invent their own
words, their own syntactic categories, etc.

The following FCG rule is an example of a lexical rule that associates a se-
mantic object (the prototype [box]) with a stem.

(def-lex-stem-rule [box]
((?top-unit
(meaning (== (prototype ?prototype [box]))))
((J ?new-unit ?top-unit)
(context (== (link ?prototype)))
(sem-cat (prototype ?prototype))))

<-->
((?top-unit
(syn-subunits (== ?new-unit)))
(?new-unit
(form (== (stem ?new-unit "box"))))))

The left-pole contains a bit of semantic structure (introducing a prototype [box])
and a semantic category for it, and the right pole a bit of syntactic structure
(introducing the stem “box” expressing this prototype).

A first order construction that uses prototypes is as follows.

(def-con-rule CommonNoun
((?top-unit
(sem-subunits (== ?prototype-unit))
(meaning (== (filter-set-prototype ?result-set ?context ?prototype))))
(?prototype-unit
(context (== (link ?prototype))))
((J ?new-unit ?top-unit (?prototype-unit))
(context (== (link ?result-set ?context)))))

<-->
((?top-unit
(syn-subunits (== ?prototype-unit)))
(?prototype-unit
(syn-cat (== (lex-cat CommonNoun))))
((J ?new-unit ?top-unit (?prototype-unit))
(syn-cat (== (constituent CommonNoun))))))

It handles another bit of meaning, namely a filter-set-prototype constraint and
associates it with a Common Noun constituent. The context feature of a unit
refers to variables that are linked from pending subunits to other subunits.
Thus the ?prototype-unit introduces ?prototype which is used by the filter-set-
prototype constraint to filter the set of objects bound to ?context and return a
new set ?result-set. The syntactic pole requires that a unit is found whose lexical
category is CommonNoun and it creates a CommonNoun constituent.
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The next example is a higher order constraint which groups a CommonNoun
constituent, as could have been built by the previous construction and an Adjec-
tive constituent, into a new CommonNoun constituent. The meaning pole of this
construction does not add new meaning, except to link the appropriate variables
coming from each of the subunits with each other. The J-operator creates a new
unit that has the adjective and common noun units as its children and presents
itself as having syntactic category ‘constituent CommonNoun’. Therefore this
new unit can recursively be combined as if it were a constituent CommonNoun.

(def-con-rule AdjNoun
((?top-unit
(sem-subunits (== ?noun-unit ?adj-unit)))
(?noun-unit
(context (== (link ?filter-set ?input-set))))
(?adj-unit
(context (== (link ?target-set ?filter-set))))
((J ?new-unit ?top-unit (?noun-unit ?adj-unit))
(context ((link ?target-set ?input-set)))))

<-->
((?top-unit
(syn-subunits (== ?noun-unit ?adj-unit)))
(?noun-unit
(syn-cat (== (constituent CommonNoun))))
(?adj-unit
(syn-cat (== (constituent Adjective))))
((J ?new-unit ?top-unit (?noun-unit ?adj-unit ))
(syn-cat (== (constituent CommonNoun))))))

Constructions like these are systematically built up by agents, as explained
in more detail in [20]. Whenever a construction for a semantic object or con-
structions for constraints that use them are missing, new ones are fabricated and
the repertoire of each agent gradually expands. Note that these constructions
so far contain virtually no syntax. They only contain very broad semantic sub-
categorisations (such as ‘prototype’) and basic syntactic categorisation (lexical
categories and constituents).

When the speaker has produced an utterance that completely expresses the
meaning, he first re-enters it, in other words he parses the utterance and checks
whether the meaning is the same one as he wanted to express and whether no
other problems come up (such as combinatorial explosions). Suppose that the
speaker is entirely satisfied, then the utterance is transmitted to the hearer.
The hearer attempts to parse the utterance and reconstruct a constraint net-
work that can run over his own sensory world model. Both the parser and the
constraint network are ‘fluid’ in the sense that they attempt to arrive at an
interpretation even if there are unknown words, rules missing, etc. Based on
feedback in the language game and on constraints coming from the language,
the hearer reconstructs as well as possible the meanings that are compatible
with the joint attention frame (the shared motives, communicative goal, and
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physical situation) and uses that to reconstruct missing rules. Because speaker
and hearer invent new constructions all the time, incompatibilities are bound to
arise, but these are flushed out by the lateral inhibition dynamics that we use
in all our experiments. It is based on increasing success of winning inventory
items (concepts, constraint networks, words, grammatical constructions, etc.)
while decreasing competing solutions. The current experiment is based on an
operational implementation of all this (reported in more detail in [20]) and we
now move beyond these capabilities to focus on the problem of combinatorial
explosions.

The bootstrapping of a language system is an extraordinarily difficult un-
dertaking for a group of agents and it is greatly aided if they start simple and
then increase complexity as they master basics. This growth in complexity can
be regulated by the agents themselves, who monitor success and then increase
challenge (based on the ‘autotelic principle‘ described in [21]). In the language
game implemented for the current experiment the speaker has to talk about
an object in the shared context between the speaker and the hearer. Assume
the speaker wishes to talk about a particular object in the context, e.g. a ball.
Depending on the shared context the required utterance can range from very
simple (e.g. “ball” when there is only one ball) to more complex (e.g. “big ball”
when there are multiple balls but it is the only big one). Even spatial relation
may need to be expressed to discriminate the object. The most complex utter-
ances that can be construed in the current experiment are combinations of a
spatial relation and Adjective-Noun constructions rendering utterances like “big
ball next-to red box”. It is this complexity that the agents can regulate, so they
won’t start talking about “ big ball next to red box” until they are confident in
talking about more simple scenes.

3 From a Lexical to a Grammatical Language

We now start by considering a lexical language, which is one where no gram-
matical constructions are built at all. When words are missing, agents execute
repair strategies to invent new words (as speaker) or adopt them (as hearer). In
the language game constructed for these experiments we speak of communica-
tive success when the speaker can produce an utterance so that the hearer can
infer the exact same meaning by interpreting this utterance. In the first exper-
iment as meanings become more complex, lexical items are built for the total
meaning as in holistic coding. Results for experiments for 5 runs with 5 agents
playing 4000 games are shown in figure 2. We see that quite quickly agents reach
a high level of communicative success and the lexicon becomes optimal after
about 1500 games. Since there are about 13 basic semantic objects (prototypes,
categories, relations) in the example domain, an optimal lexicon just for the
semantic objects is around 13 words.

But challenge is increasing steadily and communicative success starts to drop.
In response, the lexicons of the agents begin to increase as they use holistic coding
to cope with the more complex meanings. If we continue the experiment we see
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Fig. 2. Experiments where 5 agents use a purely lexical language to bootstrap a com-
munication system. It is initially successful but cannot cope when the complexity of
meanings begins to increase.

that communicative success climbs back up, but only at the expense of a much
larger lexicon that is slower to get off the ground, more difficult to learn, and
requiring more memory. Clearly it would be better if agents recruit strategies
based on exploitation of grammar.

This happens in the second experiment (figure 3). In this experiment agents
build grammatical constructions, for example to combine adjective-like semantic
objects (categories) and noun-like predicates (prototypes) as in “big ball”. The
constructions are triggered by the need to express explicitly equalities between
variables (as explained in [2]). The lexicon shows the same overshoot in the
beginning and then stabilisation around 13 words as competing words are re-
solved and lexical coherence reached. The necessary grammatical constructions
are built early on. They are similar to the Adj-Noun constructions above, i.e.
without significant syntax. Only two constructions are needed so far and agents
quickly reach agreement on them. The figure also shows ‘grammaticality‘, this
is the running average of number of utterances that make use of grammatical
constructions. We see that the agents are able to cope with increasing complex-
ity but it comes again at a price. The search space consisting of all applicable
grammatical constructions steadily increases during parsing because there are
multiple ways in which constructions can be applied. Because the interpretation
is no longer guaranteed to be deterministic this also creates the possibility that
the hearer has multiple interpretations at the end of the game. In this case we
speak of communicative success only when the hearer is able to pick the cor-
rect one by inspecting his world model. It is however the growth of the search
space that in the current experiment creates the need to recruit mechanisms to
dampen the search as shown in the next experiment.
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Fig. 3. Experiments where 5 agents use grammatical constructions in addition to a
lexicon. They are now able to maintain communicative success even as complexity of
meanings increases. But this again comes at a price because the agents have to search
through the space of applicable grammatical constructions. This is expressed by the
‘need for search’, which is a running average of the number of utterances that couldn’t
be interpreted deterministically. In other words, that required search.

4 Diagnosing and Repairing Combinatorial Explosions

After the speaker produced an utterance he does not immediately utter it for
interpretation by the hearer but instead interprets his own utterance himself.
The difference with normal interpretation being that the speaker however knows
the intended meaning and therefore has a much easier task interpreting his own
utterance then the hearer will. We call this special kind of interpretation “re-
entrance” [22]. During re-entrance the speaker builds new constructions if his
interpreted meaning contains variables that should have been equal but are not.
But re-entrance can also be used to diagnose whether search would be taking
place in the hearer. For example, for “big small ball box”, the Adjective-Noun
construction triggers twice, creating a search space with two different possible
interpretations: (1) “big box - small ball”, and (2) “small box - big ball”. The
speaker knows which interpretation is intended. He can therefore analyse the
choice point where a particular construction could match more than once and
introduce additional syntax so as to avoid such choice in the future. In the
present experiment, the speaker remedies the situation by imposing word order.

Concretely if a conflict arises between two Adjective-Noun constructions, the
speaker knows that the syntactic pole of this construction is not specific enough
and chooses (randomly) an order between the noun and adjective units and
expands the syntactic pole to become as follows:
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((?top-unit
(syn-subunits (== ?noun-unit ?adj-unit))
(form (== (meets ?noun-unit ?adj-unit))))

(?noun-unit
(syn-cat (== (constituent CommonNoun))))
(?adj-unit
(syn-cat (== (constituent Adjective))))
((J ?new-unit ?top-unit (?noun-unit ?adj-unit ))
(syn-cat (== (constituent CommonNoun)))))

The only difference with the old Adjective-Noun construction is the addition
of a form constraint in the top-unit. This form constraint requires that the
noun unit ’meets‘ the adjective unit, i.e. has to come right before it. After the
speaker has diagnosed and repaired his own inventory of constructions he restarts
production. Because he added the form constraint, the speaker can no longer
choose any combination of the four lexical entries but can only choose between
“box big ball small” or “ball small box big” which both have the same meaning
and therefore pose no real conflict.

Because there is no telepathy the hearer is not aware of the diagnosing and
repairing the speaker went through. The hearer will parse the utterance and
(if all goes well) still arrive at two possible interpretations for “box big ball
small”. However, to disambiguate, he can check against his world model which
one of these is valid in the current situation. Having recovered the ‘correct‘
interpretation, the hearer goes back to the constructional choice point that gave
rise to search and takes the syntactic features used in the speaker’s utterance (i.e.
the word order) as a clue to tighten up the construction himself. In a community

Fig. 4. Experiments where 5 agents now tighten grammatical constructions with ad-
ditional syntax in order to avoid combinatorial search. We see a drastic reduction in
search needed, even till the point (after the 2700th game) that parsing becomes deter-
ministic in all cases.
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of agents there will be different word-orders competing but the mechanism of
lateral inhibition also used to drive the lexicon towards coherence will eliminate
those that are less successful and grammatical coherence self-organises.

These repair strategies are seen at work in the next experiment (figure 4). We
see again a rapid climb of communicative success in the beginning and overshoot
in lexicon size, which becomes optimal. At the same time we see emergence of
grammatical constructions. There is also an overshoot (in the sense of more con-
structions circulating in the population than strictly needed) because there are
different ways to add syntax to a construction (e.g. Adj-Noun versus Noun-Adj
order). The competing syntax is however flushed out due to lateral inhibition.
The most important point, seen in the bottom graph, is that the search space is
now completely under control and the grammar becomes deterministic.

5 Conclusion

This paper has argued that grammar is not imposing arbitrary structure on
lexical items but that it is motivated by the need to solve certain issues that
arise in communication among embodied autonomous agents. One obvious issue
is that combinatorial explosions occur during parsing which need to be dampened
as fast as possible, otherwise memory and processing time may reach such a level
that the hearer has to give up. Additional syntactic constraints help because
they provide cues that the hearer can use to cut down parse avenues that are
not intended by the speaker. Syntactic constraints can take the form of word
order constraints, agreement, or semantic and syntactic subcategorisation. The
paper has substantiated this argument by showing a working implementation
based on Fluid Construction Grammar.

Acknowledgment

The research reported here has been conducted at the Artificial Intelligence Lab-
oratory of the Vrije Universiteit Brussel (VUB) and at the Sony Computer Sci-
ence Laboratory in Paris. Partial funding for the Sony CSL work has come from
the EU FET-ECAgents project 1940. We are very much indebted to Joachim De
Beule for help in the technical foundations for the experiments reported here.

References

1. Minett, J. W. and Wang, W. S-Y. (2005) Language Acquisition, Change and Emer-
gence: Essays in Evolutionary Linguistics. City University of Hong Kong Press:
Hong Kong.

2. Steels, L. (2005) The emergence and evolution of linguistic structure: from lexical
to grammatical communication systems. Connection Science, 17(3-4):213–230.

3. Langacker, R. (1990) Concept, Image, and Symbol: The Cognitive Basis of Gram-
mar. Berlin and New York: Mouton de Gruyter.

4. Goldberg, A. (2006) Constructions at Work. Oxford University Press, Oxford.



88 L. Steels and P. Wellens

5. Jackendoff, R. (1996) The Architecture of the Language Faculty. The MIT Press,
Cambridge Ma.

6. Nowak, M.A., N. Komarova, P. Niyogi (2001) Evolution of universal grammar.
Science, 291:114-118, 2001

7. Smith, K., Kirby, S., and Brighton, H. (2003). Iterated Learning: a framework for
the emergence of language. Artificial Life, 9(4):371-386.

8. Steels, L. (2005) What triggers the emergence of grammar? A. Cangelosi and C.L.
Nehaniv (ed.) (2005) Proceedings of the Second International Symposium on the
Emergence and Evolution of Linguistic Communication (AISB 2005 Convention,
University of Hertfordshire, Hatfield, UK). AISB.

9. Steels, L. (2002) Simulating the evolution of a grammar for case. Fourth Interna-
tional Conference on the Evolution of Language, Harvard University.

10. De Beule, J. and B. Bergen (2006) On the Emergence of Compositionality. Can-
gelosi, A., K. Smith and W.Smith (eds.) Sixth Conference on Evolution of Language
Conference, World Scientific Pub. New York.

11. Steels, L. and M. Loetzsch (2006) Perspective Alignment in Spatial Language. In:
K. Coventry, J. Bateman, and T. Tenbrink (eds.) Spatial Language in Dialogue.
Oxford University Press, Oxford.

12. Steels, L. (2004) Constructivist Development of Grounded Construction Grammars
Scott, D., Daelemans, W. and Walker M. (eds) (2004) Proceedings Annual Meeting
Association for Computational Linguistic Conference. Barcelona. p. 9-19.

13. De Beule, J. and Steels, L. (2005) Hierarchy in Fluid Construction Grammar. In
Furbach U., editor, Proceedings of KI-2005, pages 1-15. Lecture Notes in Computer
Science. Springer-Verlag, Berlin.

14. Steels, L. and J. Bleys (2005) Planning What To Say: Second Order Semantics for
Fluid Construction Grammars. In: Proceedings of CAEPIA 2005, Santiago. LNAI
Springer-Verlag, Berlin.

15. Tomasello (1995). Joint attention as social cognition. In Moore, C. and Dunham,
P., (Eds.), Joint attention : its origins and role in development. Lawrence Erlbaum
Associates.

16. Johnson-Laird, P.N. (1977) Procedural Semantics. Cognition, 5 (1977) 189-214.
17. Croft, William A. (2001). Radical Construction Grammar: Syntactic Theory in

Typological Perspective. Oxford: Oxford University Press.
18. Bergen, B.K. and Chang, N.C.: Embodied Construction Grammar in Simulation-

Based Language Understanding. In: Ostman, J.O. and Fried, M. (eds): Construc-
tion Grammar(s): Cognitive and Cross-Language Dimensions. John Benjamin Publ
Cy., Amsterdam (2003)

19. Pollard, C. and I. Sag (1994) Head-Driven Phrase Structure Grammar. University
of Chicago Press (1994)

20. Steels, L. and J. De Beule (2006) The Emergence of Hierarchy in Fluid Construction
Grammar. submitted.

21. Steels, L. (2004b) The Autotelic Principle. In Fumiya, I. and Pfeifer, R. and
Steels,L. and Kunyoshi, K., editor, Embodied Artificial Intelligence, Lecture Notes
in AI (vol. 3139), pages 231-242, Springer Verlag. Berlin, 2004.

22. Steels, L. (2003) Language-reentrance and the ’Inner Voice’. Journal of Conscious-
ness Studies, 10(4-5), pages 173-185.



P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 89 – 99, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Implementation of Biases Observed in Children’s 
Language Development into Agents 

Ryo Taguchi, Masashi Kimura, Shuji Shinohara, Kouichi Katsurada, 
and Tsuneo Nitta 

Graduate School of Engineering, Toyohashi University of Technology 
1-1 Hibariga-oka, Tempaku-cho, Toyohashi-city, 441-8580 Japan 
{taguchi, kimura, shinohara, katurada, nitta} 

@vox.tutkie.tut.ac.jp 
http://www.vox.tutkie.tut.ac.jp/ 

Abstract. This paper describes efficient word meaning acquisition for infant 
agents (IAs) based on learning biases that are observed in children’s language 
development. An IA acquires word meanings through learning the relations 
among visual features of objects and acoustic features of human speech. In this 
task, the IA has to find out which visual features are indicated by the speech. 
Previous works introduced stochastic approaches to do this, however, such ap-
proaches need many examples to achieve high accuracy. In this paper, firstly, 
we propose a word meaning acquisition method for the IA based on an Online-
EM algorithm without learning biases. Then, we implement two types of biases 
into it to accelerate the word meaning acquisition. Experimental results show 
that the proposed method with biases can efficiently acquire word meanings. 

1   Introduction 

The demand for language-mediated natural communication with PDAs, navigation 
systems, and robots is increasing in line with the development and spread of IT tech-
nologies. In the study of communication, an important problem has been how to han-
dle the meanings of symbols such as words and gestures and transfer them without 
misunderstanding. In classical AI such as the Semantic Net and Physical Symbol 
System, the meaning of each symbol is defined by another symbol, so some external 
systems are needed to connect the meaning with real objects in such schemes. This is 
called the "Symbol Grounding Problem" [1, 2]. One of the solutions to this problem is 
to give a computer, or an agent, the capability to acquire symbols representing the 
relations among visual features of objects and acoustic features of human speech 
through interactions with the real world. Moreover, in language-mediated natural 
communication between a human and an agent, the two parties need to share the sym-
bols held by each other in order to correctly understand what the other party wants to 
say. 

Recently, studies on word meaning acquisition, in which a human teaches words to 
an agent through human–agent interaction, have begun. Akaho et al. [3], Roy et al. [4] 
and Iwahashi et al. [5] respectively proposed mechanisms to acquire the word mean-
ings that represent relations among visual features of objects and acoustic features of 
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human speech using a machine learning method. By applying these mechanisms, 
agents can learn and understand word meanings in the real world.  

Such studies are divided into two types: (1) an object has a name [4], and (2) an 
object has some features which have corresponding words and the words are taught 
[3, 5]. For example, suppose that a human shows an agent a picture of a rabbit: in type 
(1) the human speaks "rabbit", while in type (2) the human speaks "rabbit" together 
with "white" or "big". Type (2) is a more difficult task than type (1) because the agent 
has to find out which visual features are represented by a word. In studies [3] and [5], 
the features are identified by using stochastic methods, however, these methods need 
a lot of examples. To overcome this problem, we propose a word meaning acquisition 
mechanism with two types of learning biases, the mutual exclusivity bias [8] and the 
shape bias [9], which are observed in children’s language development. When the 
agent with learning biases watches an object and listens to an unknown word at the 
same time, the agent can guess its word meaning based on the meanings of other 
known words. Therefore, the biases are expected to make the word meaning acquisi-
tion more efficient than a stochastic only approach. 

In section 2, we propose a basic word meaning acquisition mechanism using an 
Online-EM algorithm without biases. In section 3, we discuss formulations and im-
plementation of the biases. In section 4, we conduct experiments to test the effective-
ness of the bias. Lastly, in section 5, we describe the conclusions of this paper. 

2   Word Meaning Acquisition Mechanism  

2.1   Infant Agent 

A human infant learns language mainly based on the triadic relationship among 
him/herself, his/her parent, and an object. This relationship is also important in natural 
communication between a human and an agent because the agent can directly sense 
the object’s features, share them with the human, and acquire word meanings on the 
basis of them. For this reason, we have developed Infant Agents (IAs) that are mod-
eled after the language acquisition process of human infants. In the learning process 
of an IA, a human, who is a teacher, shows an object to the IA and speaks a word that 
represents certain features of the object. The IA perceives both human speech and the 
object’s features through its audio-visual sensors, and acquires the relationship be-
tween visual information and auditory information. The IA regards this relationship as 
a meaning of the word.  

2.2   IA’s Sensory Information 

(1) Visual Information (see Fig. 1) 
When a human shows an object, an IA receives it as a bitmap image and extracts 
the visual features from it. These features are divided into three types of attributes 
(shape, hue and lightness) by the difference of extraction procedures. Hue and 
lightness features are obtained by converting RGB signals of the image into HSV 
colors that contain hue, saturation and value (lightness). The shape feature is  
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obtained by the following process. First, three monochrome images with different 
resolutions (100%, 50%, 25%) are generated from the original image. Then, contour 
exaction is applied to each image. Lastly, 25-dimensional Higher-order Local Auto-
Correlation (HLAC) features are calculated for each image [6], and the total of 75 
(25×3) dimensional features is used as the shape feature. 

(2) Auditory Information 
In this paper, words from keyboard input are used as auditory information to avoid 
experimental complexity caused by recognition errors. 

 
Fig. 1. Visual Information of an IA 

2.3   Word Meaning Acquisition 

In our approach, a human teaches a word related to the IA's sensory information such 
as "circle", "red", "dark", etc. For example, the word "circle" represents a set of spe-
cific shapes or a specific range of shape features. Note that it does not represent other 
attributes such as hue and lightness. However, at this point, the IA is not taught which 
features of objects are represented by each word. Therefore, the IA has not only to 
learn the range, but also to identify the target attributes represented by each word. 

Learning the range is easier than identifying the target attributes because an IA can 
calculate the range by counting co-occurrence frequency between a word and visual 
features. In this paper, we express this co-occurrence frequency by probability distri-
butions of the frequency with respect to each attribute. We apply the Online-EM algo-
rithm [7] for calculating probability distributions in which probability distributions 
are generated, modified, and sometimes deleted through the E-steps and M-steps of 
the EM algorithm. 
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Identifying the target attributes needs more complex calculation. If an attribute is a 
target of a word, its probability distribution will be different from the ones obtained 
from other words because the distribution is calculated from the specific objects that 
are to be distinguished from others by the attributes. For example, when an IA learns 
the word “circle”, the probability distribution of the shape attribute will be learned 
from shape features of only circle objects. On the other hand, the probability distribu-
tion of the hue attribute will not show any specific difference from the one obtained 
from “square” or “dark”, because they are not the targets of each word and will be 
similarly learned from various hue features. Therefore, in this paper, we use the dif-
ference between the probability distribution of an attribute and that obtained from all 
objects (we call this distribution the Basis Distribution) to identify the target attribute 
(see Fig. 2). The Basis Distribution is calculated by the Online-EM algorithm before 
the word meaning acquisition. 

Here, we formalize our word meaning acquisition mechanism. When a human 
shows an object to an IA and gives a word w, the IA extracts visual features 

),...,,...,,( 21 Ii xxxxX =  from the object. The index i represents one of I attributes 

(I=3) and each xi is a J(i)-dimensional vector ( ),....,....,,( )(21
i

iJ
i
j

iii xxxx=x ). In this 

paper, x1 is a shape feature vector with seventy five dimensions, x2 is a hue feature 
vector with one dimension, and x3 is a lightness feature vector with one dimension. 
Then the IA calculates probability distribution P(xi|w) for each attribute i and a word 
w by using the Online-EM algorithm. The confidence measure Conf(i,w) 
( 1),(0 ≤≤ wiConf ) that indicates whether a word w targets attribute i or not, is calcu-

lated. Conf(i,w) is given by using the correlation Corr(i,w) ( 1),(0 ≤≤ wiCorr ) be-

tween Basis Distributions P(xi) and P(xi|w). The correlation Corr(i,w) and the confi-
dence measure Conf(i,w) are calculated as follows. 
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If Conf(i,w) is less than a threshold Thi, the attribute i is determined as a non-target 
attribute of a word w. When an object is shown to an IA, the occurrence probability of 
a word w P (w | X) is calculated by the next equation. 
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where P(w) is probability of a word w. 
If a word w has a higher value of P (w | X) than those of the other words that have 

the same set of target attributes as w, the IA considers the word w as a word represent-
ing the features of the object. 
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Fig. 2. Word meaning acquisition using stochastic methods 

3   Implementation of Learning Bias 

3.1   Learning Bias Observed in Children’s Language Development  

The philosopher Quine pointed out the following problem. If an unknown word is 
given to a child in some context, it is very difficult to determine the referent indicated 
by the word because there are huge amounts of candidate hypotheses to be a referent. 
However, when a child hears a word for the first time, he/she does not test these hy-
potheses completely but understands the referent of the word quickly with few errors. 
This is called fast mapping. Currently, many psychologists consider that fast mapping 
is executed based on some learning biases which children have inherently [8,9,10,11]. 
These biases may also be important for the agent that acquires word meanings in the 
real world. In this paper, we incorporate two biases, the mutual exclusivity bias and 
the shape bias, into an IA to acquire word meanings efficiently. 

3.2   Formulations and Implementation 

In our framework, the above hypotheses correspond to combinations of attributes. To 
test these hypotheses (combinations of attributes), our IAs use the confidence measure 
Conf(i,w). Therefore, biases should be some parameters that inhibit Conf(i,w). In this 
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paper, we introduce B(i,w,t) ( 1),,(0 ≤≤ twiB ), which includes both the mutual exclu-

sivity bias and the shape bias, to inhibit Conf(i,w). 

( )
),(),()0,,(

),(0.1),,(),(

wiSwiEwiBwhere

wiCorrtwiBwiConf

⋅=
−⋅=  (4) 

In the above expression, E(i,w) is the mutual exclusivity bias and S(i,w) is the shape 
bias. Conf(i,w) becomes a lower value than the value given by equation (2) if B(i,w,t) 
is a low value. In this case, the attribute i will be identified as a non-target from equa-
tion (3). The following sections describe the details of E(i,w), S(i,w) and attenuation 
of B(i,w,t). 

 
(1) Mutual exclusivity bias 
When a human infant learns a new word about an object, he/she is known to use a 

rule that the word meaning is not congruent with other word meanings [8]. That is, if 
an infant hears an unknown word, he/she seeks its meaning outside the meanings of 
known words. This rule is called the mutual exclusivity bias. We formulate this bias 
as follows. 

If an IA has already known some words W’ ( '' Ww ∈ ) related an object and hears 
an unknown word w when looking at the object, the IA determines the target attribute 
of w not to become the target attributes of W’. However, target attributes of a known 
word w' are not always correct if w' has not been learned enough. Therefore this bias 
should be controlled according to the number of times of learning w'. The mutual 
exclusivity bias E(i,w) is calculated by using the following equation. 
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Here, α and β are the parameters of the sigmoid function, and tw’ represents the num-
ber of times learning w'. 
 

(2) Shape bias 
Human infants use another rule. When they hear a new word about an object, they 

tend to interpret the word as indicating the shape of the object. This is called the shape 
bias [9]. This bias can be formulated by inhibiting each Conf(i,w) for non-shape at-
tributes of the word as shown in equation (6). However, it is not used if the shape 
attribute has already been inhibited by the mutual exclusivity bias. 
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(3) Attenuation of bias 
The above two biases may decrease the efficiency of word meaning acquisition de-

pending on the order of teaching words. For example, if a human teaches a word rep-
resenting color (hue or lightness) of an object first, the IA will assume that the word 
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represents the shape of the object due to the shape bias. To avoid this problem, we 
attenuate Bi

w(t) according to the number of learning t as follows. 

[ ])1,,(0.1)1,,(),,( −−+−= twiBtwiBtwiB γ  (7) 

where γ is an attenuation rate (0 < γ < 1). 

4   Experiments 

4.1   Experimental Setup 

In the experiments, we prepared 1,080,000 objects with different features (Fig. 3 
shows a part of them). Each object has one of 108 shape features, one of 100 grada-
tions of hue features, and one of 100 levels of lightness features. We assume that each 
attribute is represented by 7 words, and so an IA is taught a total of 21 words such as 
"circle", "square", "red", and so on. Note that each word targets only an attribute and 
does not have duplicated meanings. We taught the words according to the following 
three types of teaching sequence. 

Table 1. Parameters used in the experiments 

Th1 0.2 
Th2 0.4 
Th3 0.4 
α  0.5 
β  20 
γ  0.1 

 

Fig. 3. Objects used in the experiments 
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TS1: Taught words are chosen randomly. 
TS2: Seven shape words are taught first. After that, seven hue words are taught and 

then seven lightness words. 
TS3: Seven hue words are taught first. After that, seven lightness words are taught 

and then seven shape words. 

We evaluate the word meanings acquired by the IA each time we teach one word. 
In the evaluation, we show the IA 200 objects chosen randomly, and the IA speaks the 
words that represent the features of those objects. When the spoken words correctly 
represent the features of the object and their target attributes are correct, we consider 
that the IA has acquired correct word meanings. Table 1 shows parameters used in 
word meaning acquisition. 

4.2   Evaluation of Word Meaning Acquisition Mechanism Without the Biases 

We calculate correct rates and confusion rates to evaluate our basic word meaning 
acquisition mechanism without the biases. The confusion rate was calculated from the 
frequency that an IA had correctly identified the target attribute of a word but the IA 
used the word as having a different meaning. Figure 4 shows the correct rates and 
confusion rates of the word meanings that were acquired by the IA after 2,000 itera-
tions of teaching according to the teaching sequence TS1. 

The average of the correct rates was more than 90%, showing that the IA correctly 
acquired word meanings. However, the confusion rates of shape words were higher 
than those of hue and lightness concepts. Figure 5 shows the difficulty of correctly 
acquiring shape words (the horizontal axis represents the number of teaching while 
the vertical axis represents the correct rate). Shape words are more complex than hue 
and lightness because they are represented by 75-dimensional features. Moreover, the 
feature ranges of shape words are also narrower than others, and some parts of them 
overlap, causing confusion. To resolve this problem, we are now considering reducing 
the number of dimensions by using principal component analysis. 
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Fig. 4. Correct rate and confusion rate of each acquired word 
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Fig. 5. Correct word rate of shape words and other words in the learning stage 

4.3   Evaluation of the Biases 

Figures 6 to 8 show the results of comparing between the presence and absence of the 
biases in the above condition TS1 to TS3. The horizontal axis represents the number 
of teaching while the vertical axis represents the correct word rate (%). These graphs 
show that the IA with the biases is able to learn word meanings more efficiently than 
without biases. When shape words are taught first (TS2), improvement of the correct 
word rate is quicker than the other conditions, because the shape bias is applied to the 
initial shape words and the mutual exclusivity bias is applied to subsequent words 
(see Fig. 7). On the other hand, when words are chosen randomly (TS1) or shape 
words are taught at the end (TS3), the shape bias is incorrectly applied to the hue and 
lightness words. However, in actuality, this was not found to have adverse influences 
and acquisition of shape words became faster because the IA was able to correctly 
determine target attributes by attenuating incorrect biases according to the number of 
learning. However, the most efficient word meaning acquisition is achieved by teach-
ing shape words first.  
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Fig. 6. Effectiveness of the biases in TS1 
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Fig. 7. Effectiveness of the biases in TS2 
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Fig. 8. Effectiveness of the biases in TS3 

5   Conclusion 

This paper described the efficient acquisition of word meanings based on learning 
biases. In order to acquire word meanings, an agent has to learn the feature range 
represented by each word and to identify the target attributes indicated by it. Our 
stochastic method for word meaning acquisition learns the feature ranges as probabil-
ity distributions by using an Online-EM algorithm, and the target attributes are identi-
fied by comparing the correlation between these probability distributions and the 
Basis Distributions. The experimental results showed that the agent applying our 
stochastic method could acquire word meanings correctly. However, this method 
needs many examples. 

In order to resolve this problem, we formulated two biases which are observed in 
children’s language development, and implemented them into the agent. Although the 
effects of these biases depend on the teaching sequence, the results of comparative 
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experiments showed that this has few adverse influences and the most efficient learn-
ing is achieved by teaching shape words first. 

In a future work, we will implement the principle of contrast [10]; this is a widely-
known bias which is expected to make the acquisition of hierarchical meanings more 
efficient. 
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Abstract. How does a shared lexicon arise in population of agents with
differing lexicons, and how can this shared lexicon be maintained over
multiple generations? In order to get some insight into these questions we
present an ALife model in which the lexicon dynamics of populations that
possess and lack metacommunicative interaction (MCI) capabilities are
compared. We suggest that MCI serves as a key component in the main-
tenance of a linguistic interaction system. We ran a series of experiments
on mono-generational and multi-generational populations whose initial
state involved agents possessing distinct lexicons. These experiments re-
veal some clear differences in the lexicon dynamics of populations that
acquire words solely by introspection contrasted with populations that
learn using MCI or using a mixed strategy of introspection and MCI.
Over a single generation the performance between the populations with
and without MCI is comparable, in that the lexicon converges and is
shared by the whole population. In multi-generational populations lexi-
con diverges at a faster rate for an introspective population, eventually
consisting of one word being associated with every meaning, compared
with MCI capable populations in which the lexicon is maintained, where
every meaning is associated with a unique word.

1 Introduction

A key feature of natural language is metacommunicative interaction (MCI)—
utterance acts in which conversationalists acknowledge understanding or request
clarification. The need to verify that mutual understanding among interlocutors
has been achieved with respect to any given utterance—and engage in discussion
of a clarification request if this is not the case—is one of the central organising
principles of conversation [1,2]. However, hitherto there has been little work
on the emergence and significance of MCI meaning. Communicative interaction
is fundamental to evolution of grammar work, since it is interactions among
communicating agents that leads an initial ‘agrammatical’ system to evolve into
a grammar (with possible, concomitant phylogenetic modification; see e.g. [3,4]).

P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 100–112, 2006.
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However, given an I-language1 perspective, the communicative aspect as such is
not internalised in the grammar (though see [6]). Consequently, such models of
evolution of grammar cannot explain the existence of forms whose meaning is
intrinsically MCI oriented.

What significance does MCI have for linguistic interaction within a commu-
nity? Pretheoretically, MCI is redundant in so far as the communication chan-
nel, i.e. that which mediates between speaker and addressee, is perfect or close
to that. The need for MCI not only arises when the communication channel is
noisy, it also arises when there is ambiguity in the referents of the communicative
interaction.

Moreover, languages are ever changing. Utterances used in slightly various
contexts can rapidly lead the language itself to change so much as to become
unrecognisable in only a few generations [7].

Given this, acknowledgements, clarification requests (CRs) and corrections
are a key communicative component for a linguistic community. They serve as
devices for allaying worries about miscommunication (acknowledgements) or for
reducing mismatches about the linguistic system among agents (CRs and correc-
tions). That is, they serve as a device for ensuring a certain state of equilibrium
or lack of divergence gets maintained within a linguistic community. The plau-
sibility of this speculation can be assessed by converting it into more concrete
questions such as the following:

(1) Given a community A where clarification requests do not get expressed,
and community B where they do, how do the two communities evolve with
respect to vocabulary drift. How does this vocabulary drift change once a
gradual turnover of community members is introduced?

In previous work, we have shown how language converges for different types
of populations in a mono-generational model [8]. In this paper we modify the
set up in two significant ways: (a) the lexicon is continually dynamic (in our
previous set up once a word is acquired, its meaning does not change) (b) there
is generational turnover. As will become evident, this changes the results in a
dramatic and quite unexpected way.

In the next section we describe the computational model, including how grad-
ual turnover of agents is implemented. In Sect. 3 we present the experiments
and assess the validity of the proposed model. Finally, in Sect. 4, we conclude.

2 The Model

The model we propose here is an extension of the model described in [8], with the
main extensions being the introduction of a dynamic lexicon, and the implemen-
tation of a gradual turnover of agents. In our previous work we have shown how
1 Following Chomsky (as clarified by Hurford), a distinction is sometimes made be-

tween ‘I language’ — language as represented in the brains of the population and
‘E-language’ — language that exists as utterances in the arena of use. Ginzburg and
Sag [5] dispute the dichotomy particularly given the need for a view of language that
accommodates MCI.
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language converges for different types of populations within a single generation.
In this type of model as there is no generational turnover of agents the trans-
mission of language is horizontal, where the communication is between adult
agents of the same generation (e.g. [6]). In multi-generational models such as
the iterated learning model (e.g. [9,10]) language is vertically transmitted from
one generation to the next, where the adult agents are allowed to speak to the
child agents only. So in these models there is no horizontal communication (i.e.
between adults of the same generation).

We present a model which implements both horizontal (adult-adult) and ver-
tical (adult-child) language transmission (see [11] for a similar approach). The
model contains an ALife environment in which the lexicon dynamics of popu-
lations that possess and lack MCI capabilities are compared. The environment
is modelled loosely after the Sugarscape environment [12], in that it is a spatial
grid containing different plants. This environment is resemblant to the mush-
room environment in [13]. Plants can be perceived and disambiguated by the
agents. Unlike the environments in [12,13], plants are not used as a food resource
but only as topics for conversations. Agents walk randomly in the environment
and when proximate to one another engage in a brief conversational interaction
concerning plants visible to them.2

In the next section we look at the communication protocol in more detail,
followed by a closer look at the implementation of generational agent turnover.

2.1 Communication

Agents can talk about the plants in the environment by making syntactically
simple utterances—essentially one consisting of a single word. Every agents has
an internal lexicon which is represented by an association matrix (see [10,14] for
similar approaches). The lexicon stores the association scores for every meaning–
representation pair (i.e. plant–word) based on individual past experiences.
Agents don’t have an invention capability therefore are only able to talk about
the plants that they have a representation for.

Communication is a two sided process involving an intrinsic asymmetry be-
tween speaker and addressee: when talking about a plant in his field of vision,
the speaking agent necessarily has a lexical representation of the plant (a word
with the highest association score for the plant chosen as the topic), which he
sends to the hearing agent. There is no necessity, however, that the addressee
agent is able to interpret this utterance. If unable to do so (meaning that the
hearing agent doesn’t have the word in her lexicon, or that the plant it associates
with the word is not in her context) the way that the agent tries to ground it
depends on the agent’s type.

Three types of communicative agents exist in the model; agents capable of
making a clarification request (CR agents), agents incapable of doing so (intro-
spective agents), and hybrid agents that use both CRs and introspection.

2 An agent’s field of vision consists of a grid of fixed size originating from his location.
Hence proximate agents have overlapping but not identical fields of vision.



Lexicon Convergence in a Population 103

An introspective agent learns the meanings of words through disambiguation
across multiple contexts. Upon hearing a word the agent looks around her and
for every plant in her context (field of vision) she increases its association score
with the word heard. This strategy is akin to the cross-situational statistical
learning strategy used by inferential agents in [10], and to selfish learners in [14].

A CR agent on the other hand can resort to a clarification request upon
hearing a word. If hearing the word for the first time (no associations with
the word in her lexicon) or if there are no plants in her context, a clarification
request is raised. Otherwise the agent checks the plants in her context and if
there is a mismatch between her internal state and the context (agent thinks
that the word heard refers to a plant not in her context) she again resorts
to raising a clarification request. The speaking agent answers this clarification
request by pointing to the plant intended, after which the hearing agent increases
the association score of the word heard with the pointed plant. However, if
the perceived plant is in her context then the hearing agent only reinforces its
association score with the word heard without resorting to a clarification request.

A hybrid agent has a capability of either using the CR strategy or the intro-
spective strategy. The agent only resorts to a clarification request if she cannot
ground the word heard (there are no plants in her context or there is a mis-
match between her internal state and the context). When hearing an unknown
word and having some plants in the context the agent follows the introspective
strategy.

After updating her lexicon3 the hearing agent chooses the plant with the high-
est association score for the word heard. If this perceived plant matches with
the speakers intended plant then the conversational interaction is deemed as a
success. Neither agent is given any feedback on the outcome of their conversa-
tional interaction (see [10] for a similar approach). Note that there is no lateral
inhibition of all competing associations after a conversational interaction, as is
the case for guessing game models such as [6,14]. Another significant difference,
specifically between a guessing game strategy (e.g. [14]) and the CR strategy,
is in the way feedback is provided. In a guessing game, agents verify whether
the intended and perceived meanings match by evaluating ‘corrective feedback’
provided to them by the system. On the other hand, in our model, feedback is
given only on the initiative of the hearing agent. In other words, a hearing agent
is given feedback only when it explicitly asks for it (by raising a clarification
when there is an uncertainty in the meaning of the word heard).

2.2 Generational Turnover

A typical approach when modelling a multi-generational population is the in-
troduction of agent turnover. The iterated learning model [9] is an example of a
multi-generational model where the language transmission is vertical (i.e. from
one generation to the next). In such models the adult agents are always the
speakers and child agents are always the hearers. The agents play a number of

3 Only the hearing agents update their lexicons after a conversational interaction.
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language games, which defines the length of a generation. At the end of a gen-
eration, the adults are removed from the model, the children become the new
adults, and new children are introduced. This way of implementing generational
turnover in the iterated learning model and other multi-generational models (e.g.
[15]) is very rigid.

We propose a multi-generational model which is more realistic and resem-
bles closer a human community (e.g. a tribe). In order to extend the mono-
generational model described in [8] into a multi-generational model, there is a
need to introduce a gradual agent turnover. This is done by introducing mor-
tality. Every agent has a maximum age which is set randomly when the agent
is born, and it lies in the range of ±20% from agent to agent. Upon reaching
his maximum age the agent dies. Thus it is very unlikely that the whole adult
population dies out at the same time, as the adult agents are of different ages
and have different maximum ages.

In order to keep the population size stable, we also introduce natality. So
for every agent that dies a new infant agent is born to a random adult agent
in the model. The infant agent inherits the parent’s type (introspective, CR or
hybrid). Infants have an empty lexicon, with no knowledge of the meaning space
or the word space. Each infant follows the parent around and is only able to
listen to the parent’s dialogues with other agents. In fact an infant only hears
the dialogues in which her parent is the speaker. So the assumption here is that
an infant learns only the words uttered by her parent. An infant cannot be a
speaker and learns exclusively by introspection. The reason for this restriction
is that infants start without any knowledge of language, and before they can
actively engage in conversations they need to have at least some knowledge of
the language. Every infant agent has an adulthood age which is set randomly and
is about a sixth of the agent’s lifespan. The adulthood age was experimentally
determined and it gives the infant enough time to reach a good enough grasp
of the language, enabling her to actively participate in conversations with other
agents. When reaching the adulthood age an infant stops following her parent
and becomes an adult, meaning that she is able to walk around independently,
engage in conversations with other adult agents and become a parent. An infant
can die only if her parent reaches the maximum age and dies.

This multi-agent model implements both vertical and horizontal language
transmission as adult agents can communicate with each other as well as parent
agents can communicate with their children. There is no clear distinction of
when a generation starts and ends, like in the other multi-generational models,
because there is continual agent turnover which makes calculating the results
more intricate (see Sect. 3).

3 Experimental Results

This section describes different setups and experiment results for the model
described in Sect. 2. In order to test the questions raised in (1) we ran several
experiments in which agents posses distinct lexicons, and clarification requesting
(CR) and introspective capabilities.
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Before creating a population of agents, the environment is created contain-
ing 20 different plants (which represent 20 different meanings). There are six
instances of every plant and they are randomly distributed in the environment.

The population in the simulations described here is made up of 40 agents
that are also randomly distributed in the environment at the start. 20% of the
initial population is made up of infants (i.e. 8 infant agents). Agents form two
different communities each of whose members initially share a common lexicon.
The initial community lexicons are distinct from each other (in that no meaning
has the same representation associated with it). Agents can be either of the same
or different type within the community. Apart from the differences in the initial
lexicons and types between the agents, all other properties are the same.

Once the simulation starts the agents begin walking randomly in the environ-
ment. At every tick (time step) an agent’s age increase and the agent walks one
step in a random direction. After moving an agent looks for other agents (that
fall into his field of vision). If he sees another agent then two of them enter a
dialogue where the ‘see-er’ is the speaker and the ‘seen’ is the addressee. After
a dialogue the agent continues walking in a random direction. In one tick every
agent goes through this process. When an agent reaches his maximum age he
dies and a new infant is born.

The performance of the model is based upon these behaviours which are col-
lected at regular intervals in a simulation run:

– Lexical Accuracy: the population average of correctly acquired words. A word
is said to be correctly acquired if it is associated with the same meaning as
in either of the two initial lexicons.

– Meaning Coverage: the average number of meanings expressible by the over-
all population. There is no requirement that the meanings have correct as-
sociations.

– Word Coverage: the average number of words expressible by the population
(correctness not taken into account).

– Communicative Success: the percentage of successfully completed conversa-
tions. A successful conversation is when the intended meaning by the speaker
matches the perceived meaning by the hearer.

– Method of Acquisition: the percentage of conversational interactions that
follow the introspective strategy or the CR strategy.

– Distinct Lexicons: the total number of distinct lexicons in the population.
A lexicon is distinct only if there is no other lexicon in the population with
which it shares all plant-word associations, so even if two or more lexicons
have 19 out of 20 same plant-word associations they are regarded as distinct.

– Lexical Convergence: the percentage of agents sharing a lexicon. Agents share
a lexicon if and only if all the plant-word associations are the same in their
respective lexicons. Lexical convergence of 1 implies that all the agents use
the same words for every plant in their lexicons.

We ran four types of experiments with different population make-ups, namely
introspective populations, CR populations, hybrid populations and mixed



106 Z. Macura and J. Ginzburg

populations (made up of both introspective and CR agents in a 1:1 ratio). For
all different experiments, 10 trial runs were carried out for statistical analysis.

Firstly, mono-generational experiments were carried out (Sect. 3.1) in order
to see how lexicon changes within a single generation with infant agents and no
mortality. Then multi-generational experiments (Sect. 3.2) were carried out to
view the lexicon change on a longer timescale with a gradual turnover of agents.

3.1 Mono-generational Experiments

Mono-generational experiments were ran to see how the introduction of infant
agents into the model affects the performance of different populations based on
the behaviours described above. In these experiments the population was made
up of 40 agents in total, 20% of which were infants. There was no mortality and
the experiments were stopped after 100,000 ticks. Results were collected at every
1,000 ticks.

As can be seen in Fig. 1(a) the lexical accuracy for every population raises
rapidly and reaches nearly 100% by 20,000 ticks. What this means is that out of
40 possible words4 the populations are correctly acquiring around 99% of them.
Communicative success (Fig. 1(b)) also rises similarly to the lexical accuracy.
As agents acquire and strengthen their plant-word associations their lexicons
become more similar and their communications more successful. The introspec-
tive population is slower than the others as learning less frequent words takes
more time, but performancewise doesn’t differ much from the CR or hybrid
populations.

The meaning and word coverage for each population reaches 100% and there
is no difference in the time it takes between the different populations. The graphs
are very similar to the graphs in Fig. 1, thus not shown here.
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Fig. 1. (a) Lexical accuracy against time for mono-generational populations. There is
a sharp initial increase in accuracy as new words are acquired correctly. (b) Commu-
nicative success also increases sharply and eventually reaches 100%.

4 There are two initial communities, each with a distinct lexicon—for every plant the
two communities are using a distinct word. As there are 20 different plants in the
environment, the total number of distinct words in the population is 40.
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The percentage of conversational interactions where introspective or clarifica-
tion strategy have been used can be seen in Fig. 2(a). In an introspective pop-
ulation all the interactions follow the introspective strategy. In CR and hybrid
populations clarifications are raised 45% of the time while 55% of the time they
use introspection. In a mixed population the level of clarifications drops down
to around 25% as half of the population is made up of introspective agents.

Figure 2(b) shows the number of distinct lexicons in the population. There is
a sharp increase initially in the number of distinct lexicons. At the beginning of
the simulation there are two distinct lexicons. As the agents speak they acquire
novel plant-word associations so their lexicons diverge and the number of lexicons
increases. Between 10,000 and 20,000 ticks there is a peak of 38 distinct lexicons
indicating that only two agents in the population share a lexicon while everyone
else has a distinct lexicon. As the time increases, agents have more conversations
and the plant-word associations in their lexicons are strengthened, thus more
and more agents use the same word for a given plant. This increases the lexical
similarities between agents so the number of distinct lexicons starts to decrease.
Eventually one lexicon becomes predominant in the population, where every
agent uses the same word for a given plant. The CR and hybrid populations are
fastest in converging to a shared lexicon, while it takes considerably longer for
an introspective population to achieve this. A mixed population is a bit slower
than the CR and hybrid, but the peak of distinct lexicons is smaller than in
other populations (i.e. 35 distinct lexicons).
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Fig. 2. (a) Percentage of conversational interactions that follow either the introspective
or the CR strategy. (b) Number of distinct lexicons in the populations raise sharply
reaching a peak of nearly one distinct lexicon per agent. As more dialogues occur within
the population so does the number of lexicons drop, eventually stabilising at a single
lexicon that is shared by the whole population.

The lexical convergence of different populations is shown in more detail by
Fig. 3. The general trend is similar for different populations, where at the be-
ginning there are many distinct lexicons shared by few agents (represented by
peaks on the right side of the graphs). As time increases more and more agents
start sharing a lexicon (represented by smaller peaks going from right to left),
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up to the point where every agent shares a single common lexicon (represented
by peaks on the left side). What can be seen from Fig. 3(d) is that in a CR
population there are considerably fewer peaks in the middle of the graph. This
means that there are fewer competing lexicons, and that the convergence is faster
than in other populations. Introspective population shown by Fig. 3(a) is on the
other hand much slower in reaching a shared lexicon. The convergence of hybrid
(Fig. 3(c)) and mixed (Fig. 3(d)) populations are similar.
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Fig. 3. Lexical convergence for different populations. The y-axis shows the number of
distinct lexicons in a population while the z-axis indicates the percentage of agents
sharing a distinct lexicon. Average results are shown for (a) Introspective population
(b) Mixed population (c) Hybrid population and (d) CR population.

3.2 Multi-generational Experiments

The population in these experiments is kept constant to around 40 agents at any
moment in time and the ratio of adults to infants is roughly 3:1. The agent life
span is limited to around 30,000 ticks (±20%). This should reduce convergence
and raise issues of generational variation. Results were taken at every 20,000
ticks. The simulation is stopped when it reaches 2 million ticks, which means
after around 70 generations.

There are some clear differences between the mono-generational results and
the multi-generational ones. The lexical accuracy initially drops very sharply
for every population (Fig. 4(a)). At the beginning of the simulation there are
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a total of 40 words in the population (20 words from each community). As
the words compete with one another there is a point when one word becomes
dominant for a given plant and the majority of agents start using it. Thus the
other competing words for the same meaning are used less frequently. The fact
that the infant agents only learn the words uttered by their parents makes it very
unlikely that the infrequently uttered words will pass to the next generation.
After around three generations (100,000 ticks) the lexicon stabilises for every
population except for the introspective.
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Fig. 4. Results for multi-generational populations showing (a) Lexical accuracy, (b)
Communicative success, (c) Meaning coverage (d) Word coverage

The reason for this stabilisation can be explained by looking at Fig. 4(c) and
Fig. 4(d). Fig. 4(c) shows that the meaning coverage for different populations is
stable (all of them are able to express nearly every meaning). The word coverage
however drops rapidly along with the lexical accuracy, as seen in Fig. 4(d). This
is an indication that only the dominant words are surviving. Once the word
coverage drops to 50% the lexicon stabilises. Around 20 different plants (Fig.
4(c)) and 20 different words (Fig. 4(d)) are expressible by the population at this
stage, so every plant is associated with one word. These words can be successfully
passed on to the next generation as they are used with greater frequency, causing
the lexicon to stabilise.
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This is not the case for the introspective population. The lexicon keeps di-
verging very rapidly and eventually reaches nearly 0% convergence (meaning
that very few words have the association with the same plants as in the initial
lexicon). Looking again at Fig. 4(c) and Fig. 4(d) explains why this happens.
The word coverage also drops very sharply, where in the end only one word is
known by the whole population. As the meaning coverage is comparable with
other populations it can be derived that every plant in the population is asso-
ciated with the single word expressible by the population, causing the lexical
accuracy to decrease.

This in turn affects the communicative success of the introspective population
(Fig. 4(b)). As for the other populations the communicative success is constant
throughout the simulation, with the CR and hybrid populations doing slightly
better than the mixed population. Thus even though the lexicon is diverging at
a fast rate initially, the agents are still able to communicate successfully about
different plants.
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Fig. 5. (a) Percentage of conversational interactions that follow either the introspective
or the CR strategy. (b) Number of distinct lexicons in the populations drop to around
10 lexicons then oscillate around that value.

The percentage of conversational interactions where introspective or CR strat-
egy has been employed in shown by Fig. 5(a). The results are similar to mono-
generational results with the clarification frequencies for all populations (except
introspective populations) being slightly lower. The ascending order of CR fre-
quency is: introspective 0%, mixed 20%, hybrid and CR 32%. It can be seen
in Fig. 4 that the populations in which CRs can be expressed (CR, hybrid and
mixed) perform much better than the ones in which CRs can’t be expressed
(introspective populations).

None of the populations converge to a single common shared lexicon as was
the case in the mono-generational model (Fig. 5(b)). The reason is that infants
make up around 20% of the population. As infant agents tend to have incomplete
lexicons which differ form other agents, the number of distinct lexicons is higher
than in mono-generational experiments.
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Figure 6(b) shows a high degree of convergence to a common lexicon on the
adult part in a CR population. The infant lexicons are represented by peaks on
the right side of the graph and are used by about 20% of the population. The
majority of the population shares a common lexicon represented by the peaks
on the left side of the graph (between 20 and 35 agents). As for the introspective
population (Fig. 6(a)) it looks as the population has converged to a common
lexicon. This is true, but as we have shown one word is used for representing
every plant so the majority of agents converge to the same lexicon containing
only this single word.

(a) (b)

 0
 200000

 400000
 600000

 800000
 1e+006

 1.2e+006
 1.4e+006

 1.6e+006
 1.8e+006

time

 0
 5

 10
 15

 20
 25

 30
 35

 40

distinct lexicons

 0

 0.2

 0.4

 0.6

 0.8

 1

% of population

 0
 200000

 400000
 600000

 800000
 1e+006

 1.2e+006
 1.4e+006

 1.6e+006
 1.8e+006

time

 0
 5

 10
 15

 20
 25

 30
 35

 40

distinct lexicons

 0

 0.2

 0.4

 0.6

 0.8

 1

% of population

Fig. 6. Lexical convergence for (a) Introspective population and (b) CR population.
Results for hybrid and mixed populations are similar to those of CR populations thus
not shown here.

4 Conclusions and Future Work

In this paper we have discussed how metacommunicative interaction (MCI)
serves as a key component in the maintenance of a linguistic interaction system.
We ran a series of experiments on mono-generational and multi-generational pop-
ulations in which lexicon dynamics of the populations that posses and lack MCI
capabilities were compared. We have shown that in a mono-generational model
all the populations converge to a common lexicon, although the introspective
population was the slowest to achieve this.

Limiting life span of agents in the multi-generational model raised some clear
differences in the lexicon dynamics between the MCI capable and incapable pop-
ulations. The main effect demonstrated is that in the introspective populations
the lexicon diverges continually, ending up with a situation where every agent in
the population uses the same word to represent every plant in the environment.
On the other hand MCI capable populations are able to maintain the lexicon,
and the adult agents converge to a common lexicon.

While this confirms our initial theorising, much work remains to butress it as
a fundamental dividing line between MCI-ful and MCI-less populations. In our
current experiments we are seeing that increasing the maximum age of agents
in introspective populations to 50,000 improves the lexicon stability and con-
vergence (see Introspective 50000 results in Fig. 4). Another issue concerns the
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influence of topography (e.g. variety of plants in the environment), as increasing
the variety affects the performance of all populations. Further work needs to be
done in order to get more insight into both of these issues. A more far reaching
goal is to see whether using a syntactically complex language where the meaning
space is potentially unbounded changes the results.
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Abstract. This paper complements the results and analysis shown in
current studies on the evolution of signalling and cooperation. It de-
scribes operational aspects of the evolved behaviour of a group of robots
equipped with a different set of sensors, that navigates towards a target
in a walled arena. In particular, analysis of the sound signalling behav-
iour shows that the robots employ the sound to remain close to each
other at a safe distance with respect to the risk of collisions. Spatial dis-
crimination of the sound sources is achieved by exploiting a rotational
movement which amplifies intensity differences between the two sound
sensors.

1 Introduction

In recent years, various types of agent-based simulation models have been em-
ployed to look at issues concerning communication in natural organisms and
human language which can hardly be investigated with classic analytical mod-
els [1,2]. With respect to analytical and other simulation models, agent-based
models do not require the designer to make strong assumptions about the essen-
tial features on which social interactions are based—e.g, assumptions concerning
what communication is and about the requirement of individual competences in
the domain of categorisation and naming. This is particularly true in models in
which evolutionary computation algorithms are used to design artificial neural
networks as agent’s controllers. These models appear to be a valuable tool to
study how semantics and syntax originate from the evolutionary and ontogenetic
history of populations of autonomous agents [3,4]. In other words, the question
is how the evolution and the development of perceptual, cognitive and motor
capabilities relates to the emergence of a communicative system and possibly
language in a population of agents.

By using evolutionary computation and neural network controllers, Tuci et
al. [5] described an agent-based model which shows that communication, based
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on a simple sound signalling system and infrared sensors, evolves in a group of
physically different robots required to cooperate in order to achieve a common
goal. This paper complements the results and analysis shown in [5] by describing
operational aspects of the communication system employed by the robots to
perform that task. The experiment we considered is the following: three robots
are placed in an arena, as shown in Figure 1. The arena is composed of walls
and a light that is always turned on. The light can be situated at the bottom
left corridor (Env. L) or at the bottom right corridor (Env. R). The robots are
initialised with their centre anywhere on an imaginary circle of radius 12 cm
centred in the middle of the top corridor, at a minimum distance of 3 cm from
each other. Their initial orientation is always pointing towards the centroid of
the group. By centroid we refer to the geometric centroid of the triangle formed
by the centres of the three robots. The goal of the robots is to (i) navigate
towards the light whose position changes according to the type of environment
they are situated in, and (ii) avoid collisions.

The peculiarity of the task lies in the fact that the robots are equipped with
different sets of sensors. In particular, two robots are equipped with infrared and
sound sensors but they have no ambient light sensors. These robots are referred
to as RIR (see Figure 2a). The other robot is equipped with ambient light and
sound sensors but it has no infrared sensors. We refer to this robot as RAL (see
Figure 2b). Robots RIR can perceive the walls and other agents through infrared
sensors, while the robot RAL can perceive the light. Therefore, given the nature
of the task, the robots are forced to cooperate in order to accomplish their goal.
In principle, it would be infeasible for each of them to solve the task solely based
on their own perception of the world. RAL can hardly avoid collisions; RIR can
hardly find the light source. Thus, the task requires cooperation and coordina-
tion of actions between the different types of robots. Notice that the reason why
we chose the group to be composed of two RIR and one RAL robot is that this
intuitively seems to be the smallest group capable of spatially arranging itself
adaptively in order to successfully navigate the world. Although the robots differ
with respect to their sensory capabilities, they are homogeneous with respect to
their controllers. That is, the same controller, synthesised by artificial evolution,
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Fig. 1. (a) Env. L; (b) Env. R. The white circle represents robot RAL and the grey
circles represent the robots RIR. The thick lines represent the walls, and the filled circles
with spikes at the bottom left and right represents the light in each environment.
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Fig. 2. (a) The simulated robots RIR; (b) The simulated robots RAL; (c) the network
architecture. Only the connections for one neuron of each layer are drawn. The input
layer of RIR takes readings as follows: neuron N1 takes input from the infrared sensors
IR0+IR1+IR2

3
, N2 from IR4+IR5+IR6

3
, N3 from IR8+IR9+IR10

3
, N4 from IR12+IR13+IR14

3
,

N5 from sound sensor S1, and N6 from sound sensor S2. The input layer of RAL takes
readings as follows: N1 and N2 take input from ambient light sensors AL1, N3 and N4

take input from AL2, N5 from S1, and N6 from S2. M1 and M2 are respectively the
left and right motor. L is the loud-speaker (i.e., the sound organ).

is cloned in each member of the group. Both types of robots are equipped with a
sound signalling system (more details in Section 1.1). However, contrary to other
studies (see [6,7]) we do not assume that the agents are capable of distinguish-
ing their own sound from that of the other agents. The sound broadcasted into
the environment is perceived by the agent through omnidirectional microphones.
Therefore, acoustic signalling is subject to problems such as the distinction be-
tween own sound from those of others and the mutual interference due to lack
of turn-taking (see [8]).

The goal of this paper is to try to reveal operational aspects of the communi-
cation system (e.g., causal relationships between sound signals and behaviour)
used by the robots (i) to remain close to the others without colliding, and (ii)
to make actions which bring the group closer to the target.

1.1 The Simulated Agents

The controllers are evolved in a simulation environment which models some
of the hardware characteristics of the real s-bots. The s-bots are small wheeled
cylindrical robots, 5.8 cm of radius, equipped with a variety of sensors, and whose
mobility is ensured by a differential drive system (see [9] for details). Robot RIR

makes use of 12 out of 15 infrared sensors (IRi) of an s-bot, while robot RAL uses
the ambient light sensors (AL1) and (AL2) positioned at ±67.5◦ with respect to
the orientation of the robot (see Figure 2a and 2b). The signal of the infrared
sensor is a function of the distance between the robot and the obstacle. Light
sensor values are simulated through a sampling technique (see [10]).

All robots are equipped with a loud-speaker (L) that is situated in the centre
of the body of the robot, and with two omnidirectional microphones (S1 and
S2), placed at ±45◦ with respect to the robot’s heading. Sound is modelled as
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an instantaneous, additive field of single frequency with time-varying intensity
(ηi ∈ [0.0, 1.0]) which decreases with the square of the distance from the source,
as previously modelled in [8]. Sound intensity is regulated by the firing rate of
neuron N14 (see Section 2 for details). Robots can perceive signals emitted by
themselves and by other agents. The modelling of the perception of sound is
inspired by what described in [8]. There is no attenuation of intensity for self-
produced signal. The perception of sound emitted by others is affected by a
“self-shadowing” mechanism which is modelled as a linear attenuation without
refraction, proportional to the distance (δsh) travelled by the signal within the
body of the receiver (see [8] for details). This distance is computed as follows:

δsh = δsen(1 − A), 0 ≤ A < 1, A =
δ2 − R2

δsen
2 (1)

where δsen is the distance between the sound source and the sensor and δ is the
distance between the sound source and the centre of the body of the receiver, and
R is the robot’s radius (see also Figure 3). The “self” component of the sound
signal is simply equal to ηi. In order to calculate the “non-self” component, we
firstly scale the intensity of sound emitted by the sender (ηj) by applying the
inverse square law with respect to the distance between the sound source and
the microphones of the receiver. Subsequently, we multiply the scaled intensity
with an attenuation factor ψ which ranges linearly from 1 when δsh = 0 to 0.1
when δsh = 2R. To summarise, the reading Ŝis of each sound sensor s of robot
i is computed as follows:

Ŝis = self + non-self;
self = ηi

non-self =
∑

j∈[1,3]
j �=i

ηj
R2

δ2
sen

ψ (2)

δ sh

δ sen

S2  S1

M1
S.O.

M2

S2
  S1M

1
S.O

.
M

2

Shielded path

Path of signal

δ

Emitter

Receiver

0R

Fig. 3. This picture has been adapted from [8]. It shows the working principles of the
self-shadowing mechanism.
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The auditory receptive field of each microphone is bounded within the following
interval Ŝis ∈ [0, 1]. Therefore, the sound receptor can be saturated by the
“self” emitted sound in case a robot emits at its highest intensity (ηi = 1.0).
If the sound sensor is saturated by the “self” component, it is not possible for
this robot to perceive sound signals emitted by others. Concerning the function
that updates the position of the robots within the environment, we employed
the Differential Drive Kinematics equations, as presented in [11]. 10% uniform
noise was added to all sensor readings, the motor outputs and the position of
the robot. The characteristics of the agent-environment model are explained in
detail in [12].

2 The Controller and the Evolutionary Algorithm

The agent controller is composed of a network of five inter-neurons and an
arrangement of six sensory neurons and three output neurons (see Figure 2c).
The sensory neurons receive input from the agent sensory apparatus. Thus, for
robots RIR, the network receives the readings from the infrared and sound sen-
sors. For robots RAL, the network receives the readings from the ambient-light
and sound sensors. The inter-neuron network (from N7 to N11) is fully con-
nected. Additionally, each inter-neuron receives one incoming synapse from each
sensory neuron. Each output neuron (from N12 to N14) receives one incoming
synapse from each inter-neuron. There are no direct connections between sensory
and output neurons. The network neurons are governed by the following state
equation:

dyi

dt
=

⎧⎪⎨
⎪⎩

1
τi

(−yi + gIi) i ∈ [1, 6]

1
τi

(
−yi +

k∑
j=1

ωjiσ(yj + βj) + gIi

)
i ∈ [7, 14]; σ(x) = 1

1+e−x

(3)

where, using terms derived from an analogy with real neurons, yi represents
the cell potential, τi the decay constant, g is a gain factor, Ii the intensity of
the sensory perturbation on sensory neuron i, ωji the strength of the synaptic
connection from neuron j to neuron i, βj the bias term, σ(yj + βj) the firing
rate. The cell potentials yi of the 12th and the 13th neuron, mapped into [0,1]
by a sigmoid function σ and then linearly scaled into [−6.5, 6.5], set the robot
motors output. The cell potential yi of the 14th neuron, mapped into [0, 1] by
a sigmoid function σ, is used by the robot to control the intensity of the sound
emitted η. The following parameters are genetically encoded: (i) the strength of
synaptic connections ωji; (ii) the decay constant τi of the inter-neurons and of
neuron N14; (iii) the bias term βj of the sensory neurons, of the inter-neurons,
and of the neuron N14. The decay constant τi of the sensory neurons and of the
output neurons N12 and N13 are set to 0.1. Cell potentials are set to 0 any time
the network is initialised or reset, and circuits are integrated using the forward
Euler method with an integration step-size of dt = 0.1.
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A simple generational genetic algorithm is employed to set the parameters of
the networks [13]. The population contains 80 genotypes. Generations following
the first one are produced by a combination of selection with elitism, recom-
bination and mutation. More details on the characteristics of the evolutionary
algorithm employed and on the genotypes’ component values can be found in [5].

3 The Fitness Function

During evolution, each genotype is translated into a robot controller, and cloned
in each agent. Then, the group is evaluated eight times, four trials in Env. L,
and four trials in Env. R. The sequence order of environments within the eight
trials has no bearing on the overall performance of the group since each robot
controller is reset at the beginning of each trial. Each trial (e) differs from the
others in the initialisation of the random number generator, which influences
the robots’ starting position and orientation, and the noise added to motors
and sensors. Within a trial, the robot life-span is 400 s (4000 simulation cycles).
In each trial, the group is rewarded by an evaluation function fe which seeks to
assess the ability of the team to approach the light bulb, while avoiding collisions
and staying within the range of the robots’ infrared sensors.

Taking inspiration from the work of Quinn et al. [14], the fitness score is
computed as follows:

fe = KP

T∑
t=i

[(dt − Dt−1)(tanh(St/ρ))]; (4)

The simulation time steps are indexed by t and T is the index of the final time
step of the trial. dt is the Euclidean distance between the group location at time
step t and its location at time step t = 0, and Dt−1 is the largest value that dt

has attained prior to time step t. St is a measure of the team’s dispersal beyond
the infrared sensor range ρ = 24.6 cm at time step t. If each robot is within ρ
range of at least another, then St = 0. Otherwise, the two shortest lines that can
connect all three robots are found and St is the distance by which the longest
of these exceeds ρ.

P = 1 −
3∑

i=1

ci/cmax if
3∑

i=1

ci ≤ cmax reduces the score in proportion to the

number of collisions which have occurred during the trial. ci is the number of
collisions of the robot i and cmax = 4 is the maximum number of collisions

allowed. P = 0 if
3∑

i=1

ci > cmax. The team’s accumulated score is multiplied by

K = 3.0 if the group moved towards the light bulb, otherwise K = 1.0. Note
that a trial was terminated early if (a) the team reached the light bulb (b) the
team distance from the light bulb exceeded an arbitrary limit set to 140 cm, or
(c) the team exceeded the maximum number of allowed collisions cmax. More
details on the characteristics of the fitness function can be found in [5].
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4 Results

Ten evolutionary simulations, each using a different random initialisation, were
run for between 2500 and 3600 generations of the evolutionary algorithm. The
termination criterion for each run was set to a time equal to 86400 seconds of
CPU time. Experiments were performed on a cluster of 32 nodes, each with 2
AMD Opteron244TM CPU running GNU/Linux Debian 3.0 OS. Recall that the
robots of a successful group should be capable of coordinating their movement
and of cooperating, in order to approach the target without collisions. A trial is
successfully terminated when the centroid of the group is closer than 10 cm to
the the light bulb. Cooperation is required since no robot of the group can po-
tentially acquire, through its sensors, sufficient “knowledge” of the environment
to accomplish the task. The results of these simulations and of some prelimi-
nary post-evaluation tests are illustrated and discussed in [5]. To summarise, we
post-evaluated each of the best evolved controllers at the last generation of each
evolutionary run. Two of them had a success rate higher than 90% in both envi-
ronments; two displayed a performance over 80%, while the performance of the
remaining six controllers was not sufficiently good in both environments. This
paper complements these results by providing an operational analysis of the sys-
tem, in terms of the mechanisms employed by the robots to achieve their goal.
In particular, we focus on the analysis of the behaviour of a group controlled by
the best evolved controller run n. 9, that, at the re-evaluation test, had a success
rate higher than 90% in both environments.

For the sake of clarity, we recall that during a post-evaluation test, the group
is subject to a set of 1200 trials in both environments. The number of post-
evaluation trials per type of environment (i.e., 1200) is given by systematically
varying the initial positions of the three robots according to the criteria illus-
trated in [5]. During post-evaluation, the robot life-span is more than two times
longer than during evolution (i.e., 1000 s, 10000 simulation cycles). This should
give the robots enough time to compensate for possible disruptive effects induced
by initial positions never or very rarely experienced during evolution. At the be-
ginning of each post-evaluation trial, the controllers are reset (see Section 2). All
the post-evaluation tests illustrated in this paper are carried out by following the
criteria mentioned above and detailed in [5]. In all the tests in which different
types of alterations are applied to the system to disclose operational principles,
the disruptions are applied after 10 s (i.e., 100 simulation cycles) from the begin-
ning of each trial. This should give time to the controllers to reach a functional
state different from the initial one, arbitrarily chosen by the experimenter, in
which the cell potential of the neurons is set to 0.

4.1 The Group’s Behaviour

In this section we provide a qualitative description of the individual and group
motion of the best evolved simulated agents as observed through a simple graph-
ical interface. First of all, we noticed that the systematic variation of the ini-
tial positions of the robots during post-evaluation brings about contingencies in
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(a) (b)

Fig. 4. Trajectories of the agents during a successful trial (a) in an Env. L, and (b) in
an Env. R. The black lines refer to the trajectories of robot RAL while the other lines
refer to the trajectories of robots RIR. The horizontal and vertical segments represent
the walls. In each figure, we depict only the side of the corridor where the light—i.e.,
the small black dot—is located.

which the coordination of movements of the group toward the target requires
an initial effort of the robots in re-arranging their relative positions. During this
initial phase of a trial a dynamic process guided by the nature of the flow of
sensation (i.e., infrared sensors reading versus ambient light reading) induces
the specialisation of the controllers with respect to the physical characteristics
of the robots, and to the relative role that they play in the group. This phase is
followed by the navigation phase in which the group seems to maintain a rather
regular spatial configuration; that is, the two robots RIR place themselves in be-
tween the target and the robot RAL. However, note that while Env. L requires
the group to make a left turn, Env. R requires the group to make a right turn.
This asymmetry in the environmental structures corresponds to differences in
behavioural strategies employed by the group to reach the target as shown in
Figure 4. While in Env. L the robots simply turn towards the light keeping their
relative positions in the group, in Env. R we firstly observe an alignment of the
agents along the far right wall (see Figure 4b). Subsequently, the agent close to
the corner (see the dark gray line) overcomes the other two and the group starts
moving towards the target once the classical configuration of the two robots RIR

in between the target and the robot RAL is re-established.
Another important qualitative element is that each of the members of the

group is characterised by a movement with a strong angular component (anti-
clockwise). In other words, the robots proceed toward the light by rotating on
the spot. The evolution of the rotational movement is not particularly surprising
if we think about its effect of the perception of sound. First of all, we should re-
mind the reader that the intensity of sound perceived at each microphone results
from the summation of two components—the “self” and the “non-self”—and the
noise. The “self” component (i.e., the agent’s own signal) is only determined by
the intensity of the sound emitted by the robot itself. The “non-self” component
is determined by the intensity at which the sound is emitted from the loud-
speaker of a sender as well as by the relative distance and orientation of the
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loud-speaker with respect to the receiver’s microphones. Although the agents
have no means to distinguish between the “self” and “non-self” component of
the perceived sound, they can act in a way to determine patterns in the flow
of sensations which are informative on their spatial relationships. In particular,
spatial discrimination of sound sources can be achieved by the receiver through
intensity differences between the sound perceived in each ear. In our model,
these differences come about from the “simulated” physics of the propagation of
sound, including the shadowing effect (see Section 1.1). The rotational movement
may introduce rhythm in perception of an amplitude bigger than the oscillations
manifested in signalling behaviour. The oscillations of perceived sound, ampli-
fied by the rotational movement, may provide the robots the cues to adjust
their positions relative to each other, since intensity differences between the two
microphones can be a valuable mechanism for spatial discrimination of sound
sources. This issue will be extensively investigated in the next section. Notice
that, within a trial, pure linear movement replaces the rotational behaviour only
sporadically and for a very short interval. This can happen to avoid an imminent
danger of collision or if required by the navigational strategy of the group.

Two of the phenomena above mentioned (i.e., the effect of the starting position
and the rotational movement) have a strong effect on the time it takes to the
group to reach the target. Indeed, as resulted from the post-evaluation test shown
in [5], most of the successful trials of the best evolved group of robots last longer
than the 400 s given to the groups to complete the task during the evolutionary
phase. In the following, we try to clarify the role of sound signalling for the
achievement of the group phototaxis and collision avoidance behaviour.

4.2 Coordinated Motion Through Sound Signalling

Each robot of the group is required to coordinate its actions in order (i) to remain
close to the other two agents without incurring into collisions, and (ii) to make
actions which bring the group closer to the target. How are these two objectives
achieved? An answer to this question may be provided by showing the relation-
ship between the sensor readings and the actions they trigger in the robots. How
the robots sensations influence the way in which they move? In this section we
focus on the analysis of the role of the sound with respect to the achievement
of the group’s coordination of motion. In Table 1 the reader can find some sta-
tistics concerning the intensity of “self” and “non-self” component of the sound
as perceived by each agent through its microphones. This Table shows that on
average more than 92% of the sound perceived by each agent comes from the
“self” component (see Table 1 columns 2 and 8). Moreover, the small standard
deviation suggests that each agent is emitting sound at a rather fixed inten-
sity with very small oscillations that are not enough to saturate the auditory
channels (see Table 1 columns 3 and 9). Given the high intensity of the “self”
component, the “non-self” component can only induce changes in the perception
of sound that are less than 10% of the sensors’ receptive-field. However, by look-
ing at the average intensity of the “non-self” component (see Table 1 columns 4,
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6, 10, and 12) we notice that, the latter is already very “weak”, possible due
to the relatively “long” robot-robot distances. Despite this, we noticed that, if
not affected by the shadowing effect, the “non-self” plus the “self” component
may be sufficient to saturate the sensors’ receptive field of the receiver. If we
combine this data with the fact that the robots rotate on the spot while moving
towards the target, we may deduce that, during navigation, the readings of the
sound sensors of each robot may go through oscillations constrained between
an upper and a lower bound. The upper bound corresponds to the saturation
value (1.0) that is reached when the “non-self” component is not attenuated by
the shadowing effect. The lower bound corresponds to the intensity of the “self”
component that is reached when the “non-self” component is strongly attenuated
by the shadowing effect. These oscillations are very small since they concern less
than 10% of the auditory receptive field, and certainly not very regular since the
random noise applied to the sensors reading may be large enough to disrupt the
regularity of the oscillations determined by the contingencies. However, in spite of
being small and noisy, these oscillations seem to be the only phenomenon related
to the perception of sound that may play a significant role in the coordination
of action of the group. In fact, given a controller sufficiently sensitive to capture
them, they may represent a valuable perceptive cue for the receiver to spatially
discriminate sound sources and consequently relative position and orientation of
the emitter/s. Our hypothesis is that this phenomenon is exploited by the robots
to remain close to each other while avoiding collisions and moving towards the
target. The tests that follow further investigate our hypothesis on the significance
of sound for spatial discrimination and coordination of actions. We run two series
of post-evaluation tests. In the first series, we interfere with the propagation of
sound in the environment by disrupting the orientation of the robot emitter with
respect to the heading of the receiver. We refer to this as the orientation test. In
the second series, we interfere with the propagation of sound in the environment
by disrupting the the sender-receiver distance. We refer to this as the distance
test. In each of these tests, the robots undergo a set of 1200 trials in each type of
environment. For all the simulation cycles following the first 10 seconds of each
trial, the sound sensors reading of each agent are computed with respect to a
hypothetical state of the system in which the senders are supposed to be:

Table 1. This table shows average and standard deviation of the “self” and “non-
self” component of the intensity of the sound perceived by the robots at each of their
microphone—S1 and S2—during 1200 trials in each environment. Recall that the “self”
component does not differ between the microphones of the emitter.

Env. L Env. R
self non-self self non-self

S1 S2 S1 S2

avg std avg std avg std avg std avg std avg std

RIR 0.935 0.027 0.059 0.0574 0.054 0.046 0.936 0.028 0.067 0.063 0.060 0.048
RIR 0.934 0.028 0.063 0.061 0.0571 0.047 0.936 0.028 0.064 0.062 0.0571 0.048
RAL 0.925 0.012 0.061 0.058 0.061 0.055 0.922 0.017 0.063 0.059 0.063 0.059
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Fig. 5. Percentage of failure during 1200 trials in each type of environment in post-
evaluation tests with alterations applied to the relative orientation of the robots during
the computation of the perceived sound. In (a) and (b) the robots RIR, during all the
simulation cycles following the first 10 seconds of any trial, are considered to be re-
oriented with respect to the heading of robot RAL by applying the angular displacement
indicated on the horizontal axis and randomly choosing the direction of displacement
(i.e., clockwise or anti-clockwise). In (c) and (d) the robot RAL is re-oriented with
respect to the heading of each robot RIR as explained above. (a) and (c) refer to tests
in Env. L; (b) and (d) refer to tests in Env. R. The black area of the bars refers to
the percentage of trials terminated without collisions and with the group not having
reached the target. The light grey area of the bars refers to the percentage of trials
terminated due to robot-robot collisions. The dark grey area of the bars refers to the
percentage of trials terminated due to robot-wall collisions.

orientation test: re-oriented by a fixed angular displacement, ranging from a
minimum of 18◦ to a maximum of 180◦, with a randomly chosen direction
(clockwise or anti-clockwise) with respect to the heading of the receiver.

distance test: at a fixed distance to the receiver, ranging from a minimum of
2 cm to a maximum of 32 cm.

Note that, the hypothetical states are taken into account only as far as it concerns
the updating of the sound sensors’ reading of one type of robot at the time. That
is, during a set of trials, the sound perceived by robot RAL is computed with
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Fig. 6. Percentage of failure during 1200 trials in each type of environment in post-
evaluation tests with alterations applied to the robot-robot distance during the com-
putation of the sound perceived by the receiver. In (a) and (b) the robots RIR, during
all the simulation cycles following the first 10 seconds of any trial, are both considered
to be at the distance to robot RAL indicated on the horizontal axis. In (c) and (d) the
robot RAL is considered to be at the distance to robots RIR indicated on the horizontal
axis as explained above. (a) and (c) refer to tests in Env. L; (b) and (d) refer to tests in
Env. R. The black area of the bars refers to the percentage of trials terminated with-
out collisions and with the group not having reached the target. The light grey area
of the bars refers to the percentage of trials terminated due to robot-robot collisions.
The dark grey area of the bars refers to the percentage of trials terminated due to
robot-wall collisions.

reference to a hypothetical state in which the orientation/position of both robots
RIR is changed in order to meet the angular displacement/distance requirements.
In this type of tests no disruptions are applied to update the sound perceived by
robots RIR. For the orientation test the results are shown in Figure 5a and 5b.
For the distance test, the results are shown in Figure 6a and 6b. In a different set
of tests, the sound perceived by the robots RIR is computed with reference to
a hypothetical state in which the orientation/position of robot RAL is changed
in order to meet the angular displacement/distance requirements. In this type
of tests no disruptions are applied to update the sound perceived by robot RAL.



Operational Aspects of the Evolved Signalling Behaviour 125

For the orientation tests the results are shown in Figure 5c and 5d. For the
distance test, the results are shown in Figure 6c and 6d.

Generally speaking, by varying the sender-receiver orientation/distance, we
indirectly increase/decrease the magnitude of the “non-self” component. In par-
ticular, those hypothetical states in which the sender-receiver distances tend to
be decreased with respect to normal conditions, produced an increase of the
magnitude of the “non-self” component and consequently an increase of the
proportion of time in a trial the sound sensors are saturated. The same effect
is obtained by applying angular displacements which increase the attenuation
factor ψ. On the contrary, those hypothetical states in which the sender-receiver
distances tend to be increased, produce a decrease of the magnitude of the “non-
self” component and consequently a decrease of the proportion of time in a trial
the sound sensors are saturated. The same effect is obtained by applying angu-
lar displacements which decrease the attenuation factor ψ. However, while the
distance test preserves the intensity differences between the sound perceived in
each ear due to the relative orientation of the sender with respect to the re-
ceiver, the orientation test disrupts any kind of regularities in the perception
of sound which are linked to sender-receiver relative orientation. Therefore, a
drop in performance at the orientation test can be a sign of the significance
of binaural perception for spatial discrimination and behavioural coordination.
Contrary to the orientation test, the distance test informs us on the robustness
of the mechanisms that exploit binaural perception with respect to a general
increase/decrease of the intensity of the “non-self” component.

The results of the tests shown in Figure 5 and 6 are very informative. First, the
performance of the group is significantly disrupted by alterations which concern
the orientation of the sender with respect to the heading of the receiver. Figure 5
shows that the bigger the magnitude of the disruption the higher the percentage
of failure of the system. This proves that intensity differences between the sound
perceived in each ear have a bearing on the development of effective navigational
strategies as hypothesised above. In particular, regularities in the oscillation of
the sound sensors’ reading linked to the environmental contingencies and to the
“variation” of the “non-self” component, are important perceptual cues exploited
by the agents to coordinate their movements. The majority of failure are due to
robot-wall collision. In particular, by looking at the behaviour of the group in
these conditions, we noticed that, under the effects induced by the disruptions,
the robots are not capable of remaining close to each other—i.e., within the
infrared sensors’ range. When the distances becomes too high, the robots start
wandering around the arena, and the trial terminates due to a collision of the
robot RAL with the arena walls. Only in few circumstances the robots do not
lose contact to each other but they are not capable of reaching the target within
the time-limits (see Figure 5 black area of the bars).

The results shown in Figure 6 tell us that the mechanisms which exploit binau-
ral perception for spatial discrimination and behavioural coordination are quite
robust to a general increment of the sound intensity. An exception is the case
in which the robots RIR are placed very close to robot RAL in an environment
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Env. L (see Figure 6a). By looking at the behaviour of the group in these condi-
tions, we noticed that contrary to what observed in the orientation test, in the
unsuccessful trial the robots manage to remain close to each other—i.e., within
the infrared sensors’ range. However, the robot RAL is not capable of making
the left turn hitting the walls close to the corner. This is a quite general problem
in these type of tests. That is, the robots manage to approach the turn (left or
right) relatively close to each other but they fail due to the lack of behavioural
coordination of robot RAL during the turn. Another significant result is that
the robustness with respect to this type of disruptions is not the same for both
types of robots. In general, the most disruptive effects are recorded in those tests
in which discrepancies are artificially induced between the current state of the
system and the perception of sound of robot RAL. Disruptions on the perception
of sound of robots RIR when the group is located in Env. L do not alter the
performance of the system with respect to the normal conditions (see Figure 6c).
This suggests that, in Env. L robots RIR “favour” infrared over sound sensors
to coordinate their actions.

5 Conclusion

The paper described operational aspects of the behaviour of a group of robots
equipped with a different set of sensors, that navigates towards a target in a
walled arena. The results of our analysis suggest that the robots use sound to
regulate the inter-robot distances. Movements towards a zone of higher/lower in-
tensity of sound keep the robots close to each other at a safe distance. The robots
RIR tend to place themselves in between the robot RAL and the target. Owing to
this spatial displacement, the motion toward the target of robot RAL is secured
from collision against the walls. Rotational movement introduces rhythm in per-
ception which is an important cue to spatially discriminate the sound source.
Implementation details, such as the homogeneity of the controllers, or the mech-
anism employed to regulate the sound intensity, may have precluded our system
the possibility to develop a more articulated signalling behaviour. Future work
will explore solutions that allow the agents to develop more complex communica-
tion through mechanisms which favour the recognition of “self/non-self” sound,
and help minimise the interference between simultaneous production.
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TR/IRIDIA/2006-005, IRIDIA, Université Libre de Bruxelles (2006) Technical re-
port available at http://iridia.ulb.ac.be/IridiaTrSeries.

13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

14. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors.
Phil. Trans. of the Royal Soc. of London, Series A 361 (2003) 2321–2344



Propositional Logic Syntax Acquisition�

Josefina Sierra-Santibáñez
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Abstract. This paper addresses the problem of the acquisition of the
syntax of propositional logic. An approach based on general purpose
cognitive capacities such as invention, adoption, parsing, generation and
induction is proposed. Self-organisation principles are used to show how
a shared set of preferred lexical entries and grammatical constructions,
i.e., a language, can emerge in a population of autonomous agents which
do not have any initial linguistic knowledge.

Experiments in which a population of autonomous agents constructs
a language that allows communicating the formulas of a propositional
language are presented. This language although simple has interesting
properties found in natural languages, such as compositionality and re-
cursion.

1 Introduction

Recent work in linguistics and artificial intelligence [1,2,3,4,5,6,7,8] has described
interesting experiments showing the emergence of compositional and recursive
syntax in populations of agents without initial linguistic knowledge. This paper
combines general purpose cognitive capacities (e.g., invention, adoption, parsing,
generation and induction) and self-organisation principles in order to address the
problem of the acquisition of the syntax of propositional logic.

The important role of logic in knowledge representation and reasoning [9] is
well known in artificial intelligence. Much of the knowledge used by artificial
intelligent agents today is represented in logic, and linguists use it as well for
representing the meanings of words and sentences. This paper differs from pre-
vious approaches in using the syntax of logic as the subject of learning. Some
could argue that it is not necessary to learn such a syntax, because it is built in
the internal knowledge representation formalism used by the agents. We’d argue
on the contrary that logical connectives and logical constructions are a funda-
mental part of natural language, and that it is necessary to understand how an
agent can both conceptualise and communicate them to other agents.

The research presented in this paper assumes previous work on the conceptu-
alisation of logical connectives [10,11]. In [12] a grounded approach to the acqui-
sition of logical categories (connectives) based on the discrimination of a ”subset
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of objects” from the rest of the objects in a given context is described. The ”sub-
set of objects” is characterized by a logical formula constructed from perceptually
grounded categories. This formula is satisfied by the objects in the subset and not
satisfied by the rest of the objects in the context. In this paper we only focus on
the problem of the acquisition of the syntax of propositional logic, because it is a
necessary step to solve the complete problem of the acquisition of a grounded log-
ical language (encompassing the acquisition of both the syntax and the semantics
of propositional logic) and to our knowledge it has not been addressed before.

The emergence of recursive communication systems in populations of au-
tonomous agents has been studied by other authors1. The research presented
in [6] differs from the work described in the present paper by focusing on learn-
ing exemplars rather than grammar rules. These exemplars have costs, as our
grammar rules do, and their costs are reinforced and discouraged using self-
organization principles as well. The main challenge for the agents in the experi-
ments described in [6] is to construct a communication system that is capable of
naming atomic formulas and, more importantly, marking the identity relations
among the arguments of the different atomic formulas that constitute the mean-
ing of a given string of characters. This task is quite different from the learning
task proposed in the present paper which focusses on categorizing propositional
sentences and connectives, and marking the scope of each connective using the
order of the constituents of a string of characters.

The most important difference between our work and that presented in [7] is
that the latter one focusses on language transmission over generations. Rather
than studying the emergence of recursive communication systems in a single pop-
ulation of agents, as we do, it shows that the bottleneck established by language
transmission over several generations favors the propagation of compositional
and recursive rules because of their compactness and generality. In the experi-
ments described in [7] the population consists of a single agent of a generation
that acts as a teacher and another agent of the following generation that acts as
a learner. There is no negotiation process involved, because the learned never has
the opportunity to act as a speaker in a single iteration. We consider however
populations of three agents which can act both as speakers and hearers dur-
ing the simulations. Having more than two agents ensures that the interaction
histories of the agents are different from each other, in such a way that they
have to negotiate in order to reach agreements on how to name and order the
constituents of a sentence.

The induction mechanisms used in the present paper are based on the rules
for chunking and simplification in [7], although we extend them so that they can
be applied to grammar rules which have costs and usage counters attached to
them. In particular we use the approach proposed in [8] for adding costs to the
grammar rules, and computing the costs of sentences and meanings from the
costs of the rules used for generating such sentences or meanings.

Finally the meaning space used in [7] (a restricted form of atomic formulas of
second order logic) is different as well from the meaning space considered in the

1 We review the work of the authors mentioned in this introduction in section 5.
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present paper (arbitrary formulas from a propositional logic language), although
both of them require the use of recursion.

The rest of the paper is organised as follows. First we present the formalism
used for representing the grammars constructed by the agents. Then we describe
in some detail the language games played by the agents, focusing on the main
cognitive processes they use for constructing a shared lexicon and grammar:
invention, adoption, induction and self-organisation. Next we report the results
of some experiments in which a population of autonomous agents constructs a
shared language that allows communicating propositional logic formulas. Finally
we summarize some related work and the contributions of the paper.

2 Grammatical Formalism

We use a restricted form of definite-clause grammar in which non-terminals have
three arguments attached to them. The first argument conveys semantic infor-
mation. The second is a score in the interval [0, 1] that estimates the usefulness
of that association in previous communication. The third argument is a counter
that records the number of times the association has been used in previous lan-
guage games.

Many grammars can be used to express the same meaning. The following
holistic grammar can be used to express the propositional formula right∧ light2.

s([and, right, light]), 0.01) → andrightlight (1)

This grammar consists of a single rule which states that ’andrightlight’ is a valid
sentence meaning right ∧ light.

The same formula can be expressed using the following compositional, recursive
grammar: s is the start symbol, c1 and c2 are the names of two syntactic categories
associated with unary and binary connectives, respectively. Like in Prolog, vari-
ables start with a capital letter and constants with a lower case letter.

s(light, 0.70) → light (2)

s(right, 0.25) → right (3)

s(up, 0.60) → up (4)

c1(not, 0.80) → not (5)

s([P, Q], S) → c1(P, S1), s(Q,S2), {S is S1∗S2∗0.10} (6)

c2(or, 0.30) → or (7)

c2(and, 0.50) → and (8)

c2(if, 0.90) → if (9)

c2(iff, 0.60) → iff (10)

s([P, Q, R], S) → c2(P, S1), s(Q,S2), s(R,S3), {S is S1 ∗ S2 ∗ S3 ∗ 0.01} (11)

2 Notice that we use Prolog grammar rules for describing the grammars. The semantic
argument of the rules uses Lisp like (prefix) notation for representing propositional
formulas (e.g., the Prolog list [and, [not, right], light] is equivalent to ¬right∧ light).
The third argument (the use counter) of non-terminals is not shown in the examples.
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This grammar breaks down the sentence ’andrightlight’ into subparts with in-
dependent meanings. The whole sentence is constructed concatenating these
subparts. The meaning of the sentence is composed combining the meanings of
the subparts using the variables P, Q and R.

The score of a lexical rule is the value of the second argument of the left hand
side of the rule (e.g., the score of rule 8 is 0.50). The score of a grammatical
rule is the last number of the arithmetic expression that appears on the right
hand side of the rule3(e.g., the score of rule 11 is 0.01). The score of a sentence
generated using a grammatical rule is computed using the arithmetic expression
on the right hand side of that rule (e.g., the score of sentence andrightlight is
0.50*0.25*0.70*0.01=0.00875).

3 Language Games

Syntax acquisition is seen as a collective process by which a population of au-
tonomous agents constructs a grammar that allows them to communicate some
set of meanings. In order to reach such an agreement the agents interact with
each other playing language games. In the experiments described in this paper
a particular type of language game called the guessing game [13,14] is played by
two agents, a speaker and a hearer:

1. The speaker chooses a formula from a given propositional language, generates
a sentence that expresses it and communicates that sentence to the hearer.

2. The hearer tries to interpret the sentence generated by the speaker. If it
can parse the sentence using its lexicon and grammar, it extracts a meaning
which can be equal or not to the formula intended by the speaker.

3. The speaker communicates the meaning it had in mind to the hearer and
both agents adjust their grammars in order to become successful in future
language games.

In a typical experiment hundreds of language games are played by pairs of
agents randomly chosen from a population. The goal of the experiment is to
observe the evolution of: (1) the communicative success4; (2) the internal gram-
mars constructed by the individual agents; and (3) the external language used
by the population.

3.1 Invention

In the first step of a language game the speaker tries to generate a sentence that
expresses a propositional logic formula.

3 The Prolog operator ”is” allows evaluating the arithmetic expression at its right
hand side.

4 The communicative success is the average of successful language games in the last
ten language games played by the agents. A language game is successful if the hearer
can parse the sentence generated by the speaker, and the meaning interpreted by
hearer is equal to the meaning intended by the speaker.
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The agents in the population start with an empty lexicon and grammar. It
is not surprising thus that they cannot generate sentences for some meanings
at the early stages of a simulation run. In order to allow language to get off
the ground, the agents are allowed to invent new words for those meanings they
cannot express using their lexicons and grammars5.

The invention algorithm is a recursive procedure that invents a sentence E for
a meaning M. If M is atomic (not a list), it generates a new word E. If M is a list
of elements (i.e., a unary or binary connective followed by one or two formulas,
respectively), it tries to generate an expression for each of the elements in M
using the agent’s grammar. If it cannot generate an expression for an element of
M using the agent’s grammar, it invents an expression for that element calling
itself recursively on that element. Once it has generated an expression for each
element in M, it concatenates these expressions randomly in order to construct
a sentence E for the whole meaning M.

As the agents play language games they learn associations between expressions
and meanings, and induce linguistic knowledge from such associations in the form
of grammatical rules and lexical entries. Once the agents can generate sentences
for expressing a particular meaning using their own grammars, they select the
sentence with the highest score out of the set of sentences they can generate
for expressing that meaning, and communicate that sentence to the hearer. The
algorithm used for calculating the score of a sentence from the scores of the
grammatical rules applied in its generation is explained in detail later.

3.2 Adoption

The hearer tries to interpret the sentence generated by the speaker. If it can
parse the sentence using its lexicon and grammar, it extracts a meaning which
can be equal or not to the formula intended by the speaker.

As we have explained earlier the agents start with no linguistic knowledge at
all. Therefore they cannot parse the sentences generated by the speakers at the
early stages of a simulation run. When this happens the speaker communicates
the formula it had in mind to the hearer, and the hearer adopts an association
between that formula and the sentence used by the speaker.

It is also possible that the grammars and lexicons of speaker and hearer are not
consistent, because each agent constructs its own grammar from the linguistic
interactions in which it participates, and it is very unlikely that speaker and
hearer share the same history of linguistic interactions unless the population
consists only of these two agents. When this happens the hearer may be able
to parse the sentence generated by the speaker, but its interpretation of that
sentence may be different from the meaning the speaker had in mind. In this
case, the strategy used to coordinate the grammars of speaker and hearer is to
decrement the score of the rules used by speaker and hearer in the processes of
generation and parsing, respectively, and allow the hearer to adopt an association
between the sentence and the meaning used by the speaker.

5 New words are sequences from 1 to 3 letters randomly chosen from the alphabet.
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The adoption algorithm used in this paper is very simple. Given a sentence
E and a meaning M, the agent checks whether it can parse E and interpret it
as meaning M. This may happen when the hearer can parse the sentence used
by the speaker, but it obtains a different meaning from the one intended by the
speaker. In a language game the hearer always chooses the interpretation with
the highest score out of the set of all the interpretations it that can obtain for a
given sentence. So it is possible that the hearer knows the grammatical rules used
by the speaker, but the scores of these rules are not higher than the scores of the
rules it used for interpretation. If the hearer can interpret sentence E as meaning
M, the hearer does not take any action. Otherwise it adopts the association used
by the speaker by adding a new holistic rule of the form s(M, 0.01) → E to its
grammar. The induction algorithm, used to generalise and simplify the agents’
grammars, compares this rule with other rules already present in the grammar
and replaces it with more general rules whenever it is possible.

3.3 Induction

In addition to invent and adopt associations between sentences and meanings, the
agents use some induction rules [7] to extract generalizations from the grammar
rules they have learnt so far [15]. The induction rules are applied whenever the
agents invent or adopt a new association, to avoid redundancy and increase
generality in their grammars.

Simplification: Let r1 and r2 be a pair of grammar rules such that the left hand
side semantics of r1 contains a subterm m1, r2 is of the form n(m1, S) → e1,
and e1 is a substring of the terminals of r1. Then simplification can be applied to
r1 replacing it with a new rule that is identical to r1 except that m1 is replaced
with a new variable X in the left hand side semantics, and e1 is replaced with
n(X, S) on the right hand side. The second argument of the left hand side of r1
is replaced with a new variable SR. If the score of r1 was a constant value c1,
an expression of the form {SR is S ∗ 0.01} is added to the right hand side of r1.
If the score of r1 was a variable, then the arithmetic expression {SR is S1 ∗ c1}
in the right hand side of r1 is replaced by {SR is S ∗ S1 ∗ 0.01}.

Suppose an agent’s grammar contains rules 2, 3 and 4, which it has invented
or adopted in previous language games. It plays a language game with another
agent, and it invents or adopts the following rule.

s([and, light, right], 0.01) → andlightright. (12)

It could apply simplification to rule 12 (using rule 3) replacing it with rule 13.

s([and, light, R], S) → andlight, s(R, SR), {S is SR ∗ 0.01} (13)

Rule 13 could be simplified again using rule 2, replacing it with 14.

s([and, Q, R], S) → and, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (14)

Suppose the agent plays another language game in which it invents or adopts
a holistic rule for expressing the formula [or, up, light] and applies simplification
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in a similar way. Then the agent’s grammar would contain the following rules
that are compositional and recursive, but which do not use syntactic categories
for unary or binary connectives.

s([and, Q, R], S) → and, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (15)
s([or, Q, R], S) → or, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (16)

Chunk I. Let r1 and r2 be a pair of grammar rules with the same left hand side
category symbol. If the left hand side semantics of the two rules differ in only
one position, and there exist two strings of terminals that, if removed, would
make the right hand sides of the two rules the same, then chunking can be
applied.

Let m1 and m2 be the differences in the left hand side semantics of the two
rules, and e1 and e2 the strings of terminals that, if removed, would make the
right hand sides of the rules the same. A new category n is created and the
following two new rules are added to the grammar.

n(m1, 0.01) → e1 n(m2, 0.01) → e2

Rules r1 and r2 are replaced by a new rule that is identical to r1 (or r2) except
that e1 (or e2) is replaced with n(X, S) on the right hand side, and m1 (or m2)
is replaced with a new variable X in the left hand side semantics. The second
argument of the left hand side of r1 is replaced with a new variable SR. If the
score of r1 was a constant value c1, an expression of the form {SR is S ∗ 0.01}
is added to the right hand side of r1. If the score of r1 was a variable, then the
arithmetic expression {SR is S1 ∗ c1} in the right hand side of r1 is replaced by
{SR is S ∗ S1 ∗ 0.01}.
For example the agent of previous examples, which has rules 15 and 16 for
conjunctive and disjunctive formulas in its grammar, could apply chunking to
these rules and create a new syntactic category for binary connectives as fol-
lows.

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3), {S is S1 ∗ S2 ∗ S3 ∗ 0.01} (17)
c2(and, 0.01) → and (18)

c2(or, 0.01) → or (19)

Rules 15 and 16 would be replaced with rule 17, which generalises them be-
cause it can be applied to arbitrary formulas constructed using binary connec-
tives, and rules 18 and 19, which state that and and or belong to c2 (the syntactic
category of binary connectives), would be added to the grammar.

Chunk II. If the left hand side semantics of two grammar rules r1 and r2 can
be unified applying substitution X/m1 to r1 and there exists a string of terminals
e1 in r2 that corresponds to a nonterminal c(X, S) in r1, then chunking can be
applied to r2 as follows. Rule r2 is deleted from the grammar and a new rule of
the following form c(m1, 0.01) → e1 is added to it.
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Suppose the agent of previous examples adopts or invents the following rule6.

s([iff, up, right], 0.01) → iffupright. (20)

Simplification of rule 20 with rules 4 and 3 leads to replace rule 20 with 21.

s([iff, Q, R], S) → iff, s(Q, SQ), s(R, SR), {S is SQ ∗ SR ∗ 0.01} (21)

Then chunking could be applied to 21 and 17, replacing rule 21 with 22.

c2(iff, 0.01) → iff (22)

3.4 Self-organisation

The agent in the previous examples has been very lucky, but things are not always
that easy. Different agents can invent different words for referring to the same
propositional constants or connectives, and the invention process uses a random
order to concatenate the expressions associated with the components of a given
meaning. This has important consequences, because the simplification rule takes
into account the order in which the expressions associated with the meaning
components appear in the terminals of a rule. Imagine an agent invented/adopted
the following holistic rules for expressing [and,light,right] and [if,light,right].

s([and, light, right], 0.01) → andlightright
s([if, light, right], 0.01) → ifrightlight

The result of simplifying these rules using rules 2 and 3 would be the following
pair of rules which cannot be used for constructing a syntactic category for binary
connectives, because they do not satisfy the preconditions of chunking.

S([and, X, Y ], SC) → and, s(X, SX), s(Y, SY ), {SC is SX ∗ SY ∗ 0.56}
S([if, X, Y ], SC) → if, s(Y, SY ), s(X, SX), {SC is SX ∗ SY ∗ 0.56}

The agents must therefore reach agreements on how to name propositional
constants and connectives, and on how to order the expressions associated with
the different components of non-atomic meanings. Self-organisation principles
help to coordinate the agents’ grammars in such a way that they prefer to use the
rules that are used more often by other agents [16,6,3]. The set of rules preferred
by most agents for naming atomic meanings and for ordering the expressions
associated with the components of non-atomic meanings constitutes the external
language spread over the population.

The goal of the self-organisation process is that the agents in the population
be able to construct a shared external language and that they prefer using the
rules in that language over the rest of the rules in their individual grammars.
6 Notice that the scores of all rules created using invention, adoption or induction are

initialised to 0.01. The use counters (not shown in the examples) are initialised to 0.
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Coordination takes place at the third stage of a language game, when the
speaker communicates the meaning it had in mind to the hearer. Depending
on the outcome of the language game speaker and hearer take different actions.
We have talked about some of them already, such as invention or adoption, but
they can also adjust the scores of the rules in their grammars to become more
successful in future games.

First we consider the case in which the speaker can generate a sentence for
the meaning using the rules in its grammar. If the speaker can generate several
sentences for expressing that meaning, it chooses the sentence with the highest
score, the rest are called competing sentences.

The score of a sentence (or a meaning) is computed at generation (parsing)
multiplying the scores of the rules involved [8]. Consider the generation of a
sentence for expressing the meaning [and, right, light] using the following rules.

s(light, 0.70) → light (23)
s(right, 0.25) → right (24)
c2(and, 0.50) → and (25)

s([P, Q, R], S) → c2(P, S1), s(Q, S2), s(R, S3), {S is S1·S2·S3·0.01} (26)

The score S of the sentence andrightligth, generated by rule 26, is computed
multiplying the score of that rule (0.01) by the scores of the rules 25, 24 and
23 which generate the substrings of that sentence. The score of a lexical rule is
the value of the second argument of the left hand side of the rule (e.g., the score
of rule 25 is 0.50). The score of a grammatical rule is the last number of the
arithmetic expression that appears on the right hand side of the rule7(e.g., the
score of rule 26 is 0.01). The score of a sentence generated using a grammatical
rule is computed using the arithmetic expression on the right hand side of that
rule (e.g., the score of sentence andrightlight is 0.50*0.25*0.70*0.01=0.00875).

Suppose the hearer can interpret the sentence communicated by the speaker.
If the hearer can obtain several interpretations for that sentence, the meaning
with the highest score is selected, the rest are called competing meanings.

If the meaning interpreted by the hearer is the same as the meaning the speaker
had in mind, the game succeeds and both agents adjust the scores of the rules
in their grammars. The speaker increases the scores of the rules it used for
generating the sentence communicated to the hearer and decreases the scores of
the rules it used for generating competing sentences. The hearer increases the
scores of the rules it used for obtaining the meaning the speaker had in mind
and decreases the scores of the rules it used for obtaining competing meanings.
This way the rules that have been used successfully get reinforced, and the rules
that have been used for generating competing sentences or competing meanings
are inhibited to avoid ambiguity in future language games.

The rules used for updating the scores of grammar rules are the same as
those proposed in [13]. The rule’s original score S is replaced with the result of

7 The Prolog operator ”is” allows evaluating the arithmetic expression at its right
hand side.
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evaluating expression 27 if the score is increased, and with the result of evaluating
expression 28 if the score is decreased. The constant µ is a leaning parameter
which is set to 0.1.

maximum(1, S + µ) (27)
minimum(0, S − µ) (28)

If the meaning interpreted by the hearer it is not equal to the meaning the
speaker had in mind, the game fails, and speaker and hearer decrease the scores
of the rules they used for generating and interpreting the sentence, respectively.
This way the rules that have been used without success are inhibited.

If the speaker can generate a sentence for the meaning it has in mind, but the
hearer cannot interpret that sentence, the hearer adopts a holistic rule associating
the meaning and the sentence used by the speaker. This holistic rule can be
simplified and chunked later using the rest of the rules in the hearer’s grammar.

In order to simplify the agents’s grammars and avoid possible sources of am-
biguity a mechanism for purging rules that have not been useful in past
language games is introduced. Every ten language games the rules which have
been used more than thirty times and have scores lower than 0.01 are removed
from the agents’ grammars.

4 Experiments

We present the results of some experiments in which three agents construct a
shared language that allows communicating the formulas of a logical language
L = {a, b, c, l, r, u} with six propositional constants. The agents build different,
but compatible, compositional, recursive grammars that allow them to commu-
nicate each other the infinite set of meanings that can be represented in L.

First the agents play 600 language games in which they try to communicate
propositional constants. Then they play 1200 language games in which they try
to communicate propositional constants and logical formulas constructed using
unary and binary connectives (i.e., ¬,∧,∨,→ and ↔).

Tables 1 and 2 describe the individual lexicons and grammars built by the
agents at the end of a particular simulation run. The grammars built by the
agents, although different, are compatible enough to allow total communicative
success. That is, the agents always generate sentences that are understood by
the other agents.

The grammars of all the agents have recursive rules for expressing formulas
constructed using unary and binary connectives. The expression C associated
with the connective is always placed at the start of a sentence by the induction
algorithm. Let 1 and 2 be the expressions associated with the first and second
arguments, respectively, of a formula constructed using a binary connective. The
order in which 1 and 2 are concatenated determines thus the form of the sentence.
We call C12-constructions to those rules that construct a sentence concatenating
C, 1 and 2 in C12 order, and C21-constructions to those rules that concatenate
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Table 1. The lexicons of all the agents are identical, i.e., all the agents prefer the same
words for referring to the propositional constants of the language L = { a, b, c, l, r, u}

Lexicon for Propositional Constants

Lexicon a1 Lexicon a2 Lexicon a3

s(a1,a,1) → e s(a2,a,1) → e s(a3,a,1) → e
s(a1,b,1) → uo s(a2,b,1) → uo s(a3,b,1) → uo
s(a1,c,1) → bt s(a2,c,1) → bt s(a3,c,1) → bt
s(a1,l,1) → u s(a2,l,1) → u s(a3,l,1) → u
s(a1,r,1) → ihg s(a2,r,1) → ihg s(a3,r,1) → ihg
s(a1,u,1) → y s(a2,u,1) → y s(a3,u,1) → y

them in C21 order. All agents prefer C12-constructions (third rules of a1 and a2,
and second rule of a3) for expressing conjunctive and disjunctive formulas, and
they prefer to C21-constructions (sixth rules of a1 and a2, and fifth rule of a3)
for expressing implications and equivalences. Agents a1 and a2 have invented a
syntactic category (c3) for unary connectives, because they probably had several
words for expressing negation which were eliminated afterwards by the purging
mechanism; a3 has a specific rule for formulas constructed using negation, which
uses the word ”ps” preferred by the others.

All agents have created syntactic categories (c2, c1) for binary connectives used
in C12-constructions and they prefer the same words for the connectives and and
or (scores 1). They have created syntactic categories for binary connectives used
in C21-constructions and they prefer the same words for the connectives if and
iff (scores 1). There are no alternative words for any connective. This is probably
due to the fact that the purging mechanism has eliminated such words from the
lexicons of the agents.

Figure 1 shows some preliminary results about the evolution of the commu-
nicative success, averaged over ten simulation runs with different initial random
seeds, for a population of three agents8.

The agents reach a communicative success of 98% in 250 language games
and of 100% in 1000 language games. That is, after each agent has played, on
average, 200 language games about propositional constants, and 333 language
games about propositional constants and formulas constructed using logical
connectives.

5 Related Work

Batali [6] studies the emergence of recursive communication systems as the result
of a process of negotiation among the members of a population. The alternative
explored in this research is that learners simply store all of their analyzed ob-

8 The communicative success is the average of successful language games in the last
ten language games played by the agents.
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Table 2. Grammars constructed by the agents at the end of a simulation run

Grammars for Propositional Logic

Gram a1
s(a1,[X,Y],R) → c3(X,P), s(Y,Q), {R is P*Q*1}
c3(a1,not,1) → ps

s(a1,[X,Y,Z],T) → c2(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c2(a1,and,1) → oyv
c2(a1,or,1) → gs

s(a1,[X,Y,Z],T) → c1(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c1(a1,if,1) → ogb
c1(a1,iff,1) → qan

Gram a2
s(a2,[X,Y],R) → c3(X,P), s(Y,Q), {R is P*Q*1}
c3(a2,not,1) → ps

s(a2,[X,Y,Z],T) → c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(a2,and,1) → oyv
c1(a2,or,1) → gs

s(a2,[X,Y,Z],T) → c2(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c2(a2,if,1) → ogb
c2(a2,iff,1) → qan

Gram a3
s(a3,[not,Y],R) → ps, s(Y,Q), {R is Q*1}

s(a3,[X,Y,Z],T) → c1(X,P), s(Y,Q), s(Z,R), {T is P*Q*R*1}
c1(a3,and,1) → oyv
c1(a3,or,1) → gs

s(a3,[X,Y,Z],T) → c2(X,P), s(Z,Q), s(Y,R), {T is P*Q*R*1}
c2(a3,if,1) → ogb
c2(a3,iff,1) → qan

servations as exemplars. No rules or principles are induced from them. Instead
exemplars are used directly to convey meanings and to interpret signals.

The agents acquire their exemplars by recording observations of other agents
expressing meanings. A learner finds the cheapest phrase with the observed string
and meaning that can be created by combining or modifying phrases from its
existing set of exemplars, creating new tokens and phrases if necessary.

As an agent continues to record learning observations, its exemplar set accu-
mulates redundant and contradictory elements. In order to choose which of a
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Fig. 1. Evolution of communicative success in experiments involving 3 agents and
1200 language games about propositional constants and formulas of L = {a, b, c, r, l, u}
constructed using unary and binary connectives (i.e., ¬,∧,∨,→ or ↔)

set of alternative exemplars, or modified analyses based on them, will be used
in a particular episode the cost of different solution phrases are compared, and
a competition process among exemplars based on reinforcement and discourage-
ment is established. An exemplar is reinforced when it is used in the phrase an
agent constructs to record a learning observation, and it is discouraged when
it is found to be inconsistent with a learning observation. Reinforcement and
discouragement implement therefore a competition among groups of exemplars.

In the computational simulations described in [6] ten agents negotiate com-
munication systems that enable them to accurately convey meanings consisting
of sets of 2 to 7 atomic formulas (constructed from 22 unary and 10 binary pred-
icates) which involve at most 3 different variables, after each agent has made
fewer than 10000 learning observations. Each agent acquires several hundred ex-
emplars, of which a few dozen are singleton tokens identical to those of other
agents in the population.

The agents express meanings by combining their singleton tokens into complex
phrases using the order of phrases, as well as the presence and position of empty
tokens, to indicate configurations of predicate arguments. Empty tokens are also
used to signal the boundaries of constituents, the presence of specific argument
maps, and details of the structure of the phrases containing them.

Kirby [7] studies the emergence of basic structural properties of language,
such as compositionality and recursion, as a result of the influence of learning
on the complex dynamical process of language transmission over generations.

This paper describes computational simulations of language transmission over
generations consisting of only two agents: an adult speaker and a new learner.
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Each generation in a simulation goes through the following steps: 1.- The speaker
is given a set of meanings, and produces a set of utterances for expressing them
either using its knowledge of language or by some random process of invention.
2.- The learner takes this set of the utterance-meaning pairs and uses it as input
for its induction learning algorithm. 3.- Finally a new generation is created where
the old speaker is discarded, the learner becomes the new speaker, and a new
individual is added to become a new learner. At the start of a simulation run
neither the speaker nor the learner have any grammar at all.

The induction algorithm thus proceeds by taking an utterance, incorporating
the simplest possible rule that generates that utterance directly, searching then
through all pairs of rules in the grammar for possible subsumptions until no
further generalisations can be found, and deleting finally any duplicate rules
that are left over. The inducer uses merging and chunking to discover new rules
that subsume pairs of rules that have been learnt through incorporation, and
simplification for generalising some rules using other rules in the grammar.

The meaning space of the second experiment described in [7] consists of for-
mulas constructed using 5 binary predicates, 5 objects and 5 embedding binary
predicates. Reflexive expressions are not allowed (i.e., the arguments of each
predicate must be different). Each speaker tries to produce 50 degree-0 mean-
ings, then 50 degree-1 meanings, and finally 50 degree-2 meanings. The grammar
of generation 115 in one of the simulation runs has syntactic categories for nouns,
verbs, and verbs that have a subordinating function. It also has a grammar rule
that allows expressing degree-0 sentences using VOS (verb, object, subject) or-
der, and another recursive rule that allows expressing meanings of degree greater
than 0. In the ten simulation runs performed the proportion of meanings of de-
grees 0, 1 and 2 expressed without invention in generation 1000 is 100%.

6 Conclusions

This paper has addressed the problem of the acquisition of the syntax of propo-
sitional logic. An approach based on general purpose cognitive capacities such
as invention, adoption, parsing, generation and induction has been proposed.
Self-organisation principles have been used to show how a shared set of pre-
ferred lexical entries and grammatical constructions, i.e., a language, can emerge
in a population of autonomous agents which do not have any initial linguistic
knowledge.

Experiments in which a population of autonomous agents comes up with a
language that allows them to communicate about the formulas of a propositional
language have been presented. This language although simple has interesting
properties found in natural languages, such as compositionality and recursion.
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Abstract. This paper describes a machine learning method that enables
robots to learn the capability of linguistic communication from scratch
through verbal and nonverbal interaction with users. The method fo-
cuses on two major problems that should be pursued to realize natural
human-machine conversation: a scalable grounded symbol system and
belief sharing. The learning is performed in the process of joint percep-
tion and joint action with a user. The method enables the robot to learn
beliefs for communication by combining speech, visual, and behavioral re-
inforcement information in a probabilistic framework. The beliefs learned
include speech units like phonemes or syllables, a lexicon, grammar, and
pragmatic knowledge, and they are integrated in a system represented
by a dynamical graphical model. The method also enables the user and
the robot to infer the state of each other’s beliefs related to communi-
cation. To facilitate such inference, the belief system held by the robot
possesses a structure that represents the assumption of shared beliefs and
allows for fast and robust adaptation of it through communication with
the user. This adaptive behavior of the belief systems is modeled by the
structural coupling of the belief systems held by the robot and the user,
and it is performed through incremental online optimization in the pro-
cess of interaction. Experimental results reveal that through a practical,
small number of learning episodes with a user, the robot was eventually
able to understand even fragmental and ambiguous utterances, act upon
them, and generate utterances appropriate for the given situation. This
work discusses the importance of properly handling the risk of being mis-
understood in order to facilitate mutual understanding and to keep the
coupling effective.

1 Introduction

The process of human communication is based on certain beliefs shared by those
communicating. Language is one such shared belief, and it is used to convey
meaning based on its relevance to other shared beliefs [1]. These shared beliefs
are formed through interaction with the environment and other people, and the
meaning of utterances is embedded in such shared experiences.

P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 143–167, 2006.
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From the perspective of objectivism, if those communicating want to logically
convince each other that proposition p is a shared belief, they must prove that the
infinitely nested proposition, “They have information that they have information
that . . . that they have information that p,” also holds. However, in reality, all
we can do is assume, based on a few clues, that our beliefs are identical to those
of the other people we are talking to. In other words, it can never be guaranteed
that our beliefs are identical to those of other people. Because shared beliefs
defined from the viewpoint of objectivism do not exist, it is more practical to
see shared beliefs as a process of interaction between the belief systems held
by each person communicating. The processes of generating and understanding
utterances rely on the system of beliefs held by each person, and this system
changes autonomously and recursively through these two processes. Through
utterances, people simultaneously send and receive not only the meanings of
their words but also, implicitly, information about each other’s system of beliefs.
This dynamical process works in a way that makes the belief systems consistent
with each other. In this sense, we can say that the belief system of one person
couples structurally with the belief systems of those with whom he or she is
communicating [2].

Communication by spoken language is one of the most natural methods for
human-machine interfaces. The progress made in sensor technologies and in the
infrastructure of ubiquitous computing has enabled machines to sense physical
environments as well as the behavior of users. In the near future, machines that
change their behavior according to the situation in order to support human ac-
tivities in everyday life will become more and more common, and for this they
should feature user-centered intelligent interfaces. One way to obtain such in-
terfaces is through personalization [3], and one of the most essential features of
personalized multimodal interfaces is the ability of the machine to share experi-
ences with the user in the physical world. In the future, spoken language inter-
faces will become increasingly important not only because they enable hands-free
interaction but also because of the nature of language, which inherently conveys
meaning based on shared experiences as mentioned above. For us to take advan-
tage of such interfaces, language processing methods must make it possible to
reflect shared experiences.

However, existing language processing methods, which are characterized by
fixed linguistic knowledge, do not satisfy this requirement [4]. In these methods,
information is represented and processed by symbols whose meaning has been
pre-defined by the machines’ developers. In most cases, the meaning of each
symbol is defined by its relationship to other symbols, and it is not connected to
perception or to the physical world. The precise nature of experiences shared by
a user and a machine, however, depends on the situation. Because it is impos-
sible to prepare symbols for all possible situations in advance, machines cannot
appropriately express and interpret experiences under dynamically changing sit-
uations. As a result, users and machines fail to interact in a way that accurately
reflects shared experiences.
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To overcome this problem and realize natural linguistic communication be-
tween humans and machines, the methods should satisfy the following require-
ments.

Scalable Grounded Symbol System: The machines themselves must be
able to create a symbol system that reflects their experiences in natural
ways. Such a symbol system has to include symbols for perceptual cate-
gories, abstract concepts, words, and the map between word sequences (or
forms) and meanings (or functions). The information of language, percep-
tion, and actions should be processed in an integrative fashion. Perceptual
categories should be extracted from this information, and the abstract con-
cepts created based on these categories [5]. The created symbols should then
be embedded in an adaptively changing belief system, in which the rela-
tions among symbols are represented based on experienced events in the
real world. The grounding of the meanings of utterances in conversation in
the physical world was explored in [6] and [7], but they did not pursue the
learning of grounded symbols.

Belief Sharing: In communications, grounded beliefs held by a user and a
machine should ideally be as identical or consistent to each other as possi-
ble, with the machine and the user coordinating their utterances and actions
to form such beliefs. To achieve such coordination, the machines should in-
clude a mechanism that enables the user and machine to infer the state of
each other’s belief system in a natural way. When a participant interprets
an utterance based on their assumptions that certain beliefs are shared and
is convinced, based on certain clues, that the interpretation is correct, he
or she strengthens the confidence that the beliefs are shared. On the other
hand, since the sets of beliefs assumed to be shared by participants actually
often contain discrepancies, the more beliefs a listener needs to understand
an utterance, the greater the risk that the listener misunderstands it. There-
fore, to realize appropriate coupling of belief systems, the computational
mechanism should produce utterances so as to control the balance between
the transmissions of the meanings of utterances and the information on the
state of belief systems. Theoretical research [8] and computational model-
ing [9] focused on the formation of shared beliefs through the transmission
of utterance meanings have attempted to represent the formation of shared
beliefs as a procedure- and rule-driven process. In contrast, we should focus
on the system of beliefs to be used in the process of generating and under-
standing utterances in a physical environment; moreover, it is important to
represent the formation of this system by a mathematical model to achieve
robust communication.

Both of these requirements show that the capability of learning is essential in
communications. The cognitive activities related to a scalable grounded symbol
system and belief sharing can be observed clearly in the process of language acqui-
sition by infants as well as in everyday conversation by adults. To focus on learning
capabilities in communication, we have been taking on the challenge of developing
a method that enables robots to learn linguistic communication capability from
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scratch through verbal and nonverbal interaction with users [10,11,12], instead of
directly pursuing language processing for everyday conversation.

Language acquisition by machines has been attracting interest in various re-
search fields [13], and several pioneering studies have developed algorithms based
on inductive learning by using a set of pairs, where each pair consists of a word
sequence and nonlinguistic information about its meaning. In [14,15,16,17,18],
visual information, rather than symbolic, was given as nonlinguistic informa-
tion. Spoken-word acquisition algorithms based on the unsupervised clustering
of speech tokens have also been described [19,15,17]. In [20,21], the socially in-
teractive process for the evolution of grounded linguistic knowledge shared by
communication agents was examined from the viewpoint of game theory and a
complex adaptive system. In [22], a connectionist model for acquiring the seman-
tics of language through the behavioral experiences of a robot was presented,
focusing on the compositionality of semantics.

In contrast, the method described in this paper focuses on online learning of a
pragmatic capability in the real world through verbal and nonverbal interaction
with humans, as well as consideration to the above two requirements. This ap-
proach enables a robot to develop the pragmatic capability within a short period
of interaction by fast and robust adaptation of its belief system relative to a user.
This fast and robust adaptation is a very important feature, since a typical user
cannot tolerate extended interaction with a robot that does not possessed com-
munication capability and, moreover, situations in actual everyday conversation
continuously change.

The learning method applies information from raw speech and visual observa-
tions as well as behavioral reinforcement, which is integrated in a probabilistic
framework. A system of beliefs belonging to the robot includes speech units
like phonemes or syllables, a lexicon consisting of words whose meanings are
grounded in vision and motion, simple grammar, non-linguistic beliefs, the rep-
resentation of the assumption of shared beliefs, and the representation of the
consistency between the belief systems of the user and the robot. This belief
system is represented by a dynamical graphical model (e.g. [23]), and expands
step-by-step through learning. First, the robot learns the basic linguistic beliefs,
which comprise speech units, lexicon, and grammar, based on joint perceptual
experiences between the user and the robot [10,12]. Then, the robot learns an
entire belief system based on these beliefs online in an interactive way to de-
velop a pragmatic capability [11]. The belief system has a structure that reflects
the state of the user’s belief system; thus, the learning makes it possible for
the user and the robot to infer the state of each other’s belief systems. This
mechanism works to establish appropriate structural coupling, leading to mutual
understanding.

This paper proceeds as follows. Section 2 describes the setting for the robot to
learn linguistic communication. The requirements on a scalable grounded sym-
bol system and belief sharing are mainly addressed from Sec. 3 to Sec. 5 and
in Sec. 6, respectively. Section 3 explains the method of learning speech units,
followed by Sec. 4, which describes the learning method of words referring to
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Fig. 1. Interaction between a user and a robot

objects, motions, and abstract concepts. Section 5 relates to the learning method
of simple grammar. Section 6 addresses the method for learning pragmatic ca-
pability, which enables the structural coupling of belief systems held by a robot
and a user. Section 7 discusses the findings and mentions future works.

2 Setting for Learning

2.1 Interaction

The spoken-language acquisition task in this work was set up as follows. A
camera unit and a robot arm with a hand were set alongside a table, and a
participant and the learning robot saw and moved the objects on the table as
shown in Fig. 1. The robot arm had seven degrees of freedom and the hand had
one. A touch sensor was attached to the robot’s hand. The robot initially did
not possess any concepts regarding the specific objects or the ways in which they
can be moved, nor did it have any linguistic knowledge.

The interactions for step-by-step learning were carried out as follows. First, in
learning speech units, a participant spoke for approximately one minute. Second,
in learning words that refer to objects, the participant pointed to an object
on the table while speaking a word describing it. A sequence of such learning
episodes provides a set of pairs, each of which is comprised of the image of an
object and the speech describing it. The objects used included boxes, stuffed
and wooden toys, and balls (examples are shown in Fig. 2). In addition, in each
of the episodes for learning words referring to motions, the participant moved
an object while speaking a word describing the motion. Third, in each of the
episodes for learning grammar, the participant moved an object while uttering a
sentence describing the action. By the end of this learning, the participant and
the robot had shared certain linguistic beliefs consisting of a lexicon and simple
grammar, and the robot could understand utterances 1 to some extent.
1 No function words are included in the lexicon.
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Fig. 2. Examples of objects used

Finally, in the learning of pragmatic capability, the participant asked the robot
to move an object by making an utterance and a gesture, and the robot acted in
response. If the robot responded incorrectly, the user slapped the robot’s hand.
The robot also asked the user to move an object, and the user acted in response.
The robot’s system of beliefs was formed incrementally, online, through such
interaction.

2.2 Speech and Image Signal Processing

A close-talk microphone was used for speech input. The camera unit contained
three separate CCDs so that three-dimensional information on each scene could
be obtained. The information regarding the position in terms of the depth coor-
dinate was used in the attention-control process.

Speech was detected and segmented based on changes in the short-time power
of speech signals, and objects were detected when they were located at a dis-
tance of 50-80 cm from the stereo camera unit. All speech and visual sensory
output was converted into predetermined features. The speech features used were
Mel-frequency cepstral coefficients [24], which are based on short-time spectrum
analysis, their delta and acceleration parameters, and the delta of short-time
log power. These features (25-dimensional) were calculated in 20-ms intervals
with a 30-ms-wide window. The visual features used were position on the ta-
ble (two-dimensional: horizontal and vertical coordinates), velocity (two-dimen-
sional), L*a*b* components (three dimensions) for the color, complex Fourier
coefficients (eight dimensions) of 2D contours for the shape [25], and the area
of an object (one dimension) for the size. Trajectory of the object’s motion is
represented by a time-sequence of its positions.

3 Learning Speech Units

3.1 Difficulty

Speech is a time-continuous one-dimensional signal. The method learns statis-
tical models of the speech units from such a signal without any transcription
on phoneme sequence nor any boundaries between phonemes being given. The
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difficulty of learning speech units is ascribed to the difficulties of speech segmen-
tation and the clustering of speech segments into speech units.

3.2 Method Using Hidden Markov Models

It is possible to cope with the difficulty described above by using Hidden Markov
Models (HMMs) and their learning algorithm called the Baum-Welch algorithm
[26]. The HMM is a particular form of a graphical model that statistically rep-
resents dynamic characteristics of time-series data. It consists of unobservable
states, each of which has a probability distribution of observed data, and the
probabilities of transitions between them. The Baum-Welch algorithm makes it
possible to perform the segmentation, clustering, and learning of HMM param-
eters simultaneously.

In this method, each speech unit HMM includes three states and allows for
left-to-right transitions. Twenty speech unit HMMs were connected to one an-
other to construct a whole speech unit HMM (Fig. 3), in which transitions were
allowed from the last states of the speech unit HMMs to their first states. All
parameters of this HMM were learned using speech data approximately one
minute in length without any phoneme transcriptions. After learning the speech
unit HMMs, the individual speech unit HMMs h1, h2, h3, ..., and hNp

were
separated from one another by deleting edges between them, and a speech unit
HMM set was constructed. The model for each spoken word was represented by
connecting these speech unit HMMs.

3.3 Number of Speech Units

In the above method, the number Np of speech unit models was determined
empirically. However, ideally it should be learned from speech data. Such a
method has already been presented [10], which learns the number of speech
units and the number of words simultaneously from data comprising pairs of
an image of an object and a spoken word describing it. The model performs in
a batch-like manner using mutual information between the image and speech
observations.

4 Learning Words

4.1 Words Referring to Objects

Difficulty. In general, the difficulty of acquiring spoken words and the visual
objects they refer to as their meanings can be ascribed to the difficulties in
specifying features and extending them.

Specification: The acoustic features of a spoken word and the visual features
of an object to which it refers should be specified using spatiotemporally con-
tinuous audio-visual data. For speech, this means that a continuously spoken
utterance is first segmented into intervals, after which acoustic features are
extracted from one of the segmented intervals. For objects, this means that
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h3

Fig. 3. Structure of HMM for learning speech units

an object is first selected for a given situation, and then the spatial part of
the object is segmented; after that, visual features are extracted from the
segmented part of the object.

Extension: In order to create categories for a given word and its meaning, it
is necessary to determine what other features fall into the category to which
the specified features belong. This extension of the features of a word’s refer-
ent to form the word’s meaning has been investigated through psychological
experiments [27]. When shown an object and given a word for it, human
subjects tend to extend the features of the referent immediately to infer
a particular meaning of the word, a cognitive ability called fast mapping
(e.g. [28]), although such inference is not necessarily correct. For machines,
however, the difficulty in acquiring spoken words arises not only from the
difficulty in extending the features of referents but also from that in under-
standing spoken words. This is because the accuracy of speech recognition
by machines is currently much lower than that by humans, meaning it is
not easy for machines to determine whether two different speech segments
belong to the same word category.

Learning Method. The method described here mainly addresses the problem
of extension, in which learning is carried out in an interactive way [12]. The user
shows a physical object to the robot and at the same time speaks the name of
the object or its description. The robot then decides whether the input word is
a word in its vocabulary (whether it is a known word) or not (whether it is an
unknown word). If the robot judges that the input word is an unknown word, it
enters the word into its vocabulary. If the robot judges that it cannot make an
accurate decision, it asks the user a question to confirm whether the input word
is part of its vocabulary. For the robot to make a correct decision, it uses not
only speech but also visual information about the objects to make an accurate
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Fig. 4. A scene in which utterances were made and understood

decision about an unknown word. For example, when the user shows an orange
and says the word /�rin�/, even if the speech recognizer outputs an unknown
word /are��/ as the first candidate, the system can modify it to the correct word
/�rin�/ in the lexicon using visual clues. Such a decision is carried out by using a
function that represents the confidence that an input pair of image o and speech
s belongs to each existing word category w and is adaptively changed online.

Each word or lexical item to be learned includes statistical models, p(s|w)
and p(o|w), for the spoken word and an object image category for its meaning.
The model for each image category p(o|w) is represented by a Gaussian function
in a twelve-dimensional visual feature space (in terms of shape, color and size),
and learned based on a Bayesian method (e.g. [29]) every time an object image
is given. The Bayesian method makes it possible to determine the area in the
feature space that belongs to an image category in a probabilistic way, even
if only a single sample is given. Learned words include those that refer to the
whole objects, shapes, colors, sizes, and combinations of them. The model for
each spoken word p(s|w) was represented by a concatenation of speech unit
HMMs; this extends a speech sample to a spoken word category.

4.2 Words Referring to Motions

The concept of motion of moving objects represents the time-varying spatial
relation between a trajector and a landmark [30]. In Fig. 4, for instance, if the
stuffed toy in the middle and the box at the right are considered landmarks,
the movements of the trajector are understood as move over and move onto,
respectively. The robot has to infer the landmark selected in each scene, which
is not observed in the learning data. In addition, the coordinates in the space
should be determined to appropriately represent the graphical model for each
concept of a motion.

In the proposed method [31], the concepts regarding motions are represented
by probability density functions of the trajectory u of moved objects. The prob-
ability density function p(u|ot,p, ol,p, w) for the trajectory of the motion referred
by word w is represented by a HMM given the positions ot,p, ol,p of a trajector
and a landmark. The HMMs of the motions are learned while the coordinates
and the landmarks are being inferred based on the EM algorithm, in which
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move-over move-close-tomove-close-to

move-onto move-up

Fig. 5. Examples of trajectories of objects moved in the learning episodes, and selected
landmarks and coordinates

a landmark is taken as a latent variable. Examples of inferred landmarks and
coordinates in the learning of some motion concepts are shown in Fig. 5.

The trajectory for the motion referred by a word is generated by maximizing
the output probability of the learned HMM, given the positions of a trajector
and a landmark. This maximization is carried out by the algorithm described
in [32].

A graphical model of the lexicon containing words referring to objects and
motions is shown in Fig. 6

4.3 Abstract Meanings

The categories that are learned by the previously mentioned methods are formed
directly from perceptual information. However, we have to consider words that
refer to concepts whose levels of abstractness are higher and that are not formed
directly from perceptual information, such as “tool,” “food,” and “pet.” In a
study on the abstract nature of symbols’ meanings [33], it was shown that chim-
panzees could learn the lexigrams (graphically represented words) that refer to
not only individual object categories (e.g. “banana,” “apple,” “hammer” and
“key”) but also the functions (“tool” and “food”) of the objects. They could
also learn the connection between the lexigrams referring to these two kinds of
concepts and generalize it appropriately to connect new lexigrams for individual
objects to one of the lexigrams for functions.

A method enabling robots to have this capability of chimpanzees was pro-
posed in [34]. In that method, the motions given to objects are taken as their
functions. The main problem is the decision regarding whether the meaning of
a new input word is for a concept formed directly from perceptual information
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Fig. 6. A graphical model of a lexicon containing words referring to objects and motions

or for a function of objects. Because these two kinds of concepts are allocated
to the states of different nodes in the graphical model, the problem becomes the
selection of the structures of the graphical model. This selection is performed by
the Bayesian principle with the calculation of posterior probabilities using the
variational Bayes method [35].

5 Learning Grammar

5.1 Difficulty

In learning grammar using moving images of actions and speech describing them,
the robot should detect the correspondence between a semantic structure in the
moving image and a syntactic structure in speech. However, such semantic and
syntactic structures are not observable. While we can extract an enormous num-
ber of structures from a moving image and speech, we ideally select the ones for
which the correspondence between them is the most appropriate. The grammar
should be statistically learned using such correspondences, and inversely used to
extract the correspondence.

5.2 Learning Method

The set comprising triplets of a scene O before an action, the action a, and a
sentence utterance s describing the action, Dg = {(s1, a1, O1), (s2, a2, O2), . . . ,
(sNg

, aNg
, ONg

)}, is given in this order as learning data. Scene Oi includes the set
of positions oj,p and features oj,f concerning color, size, and shape, j = 1, ..., Ji,
of all objects in the scene. The action ai is represented by a pair, (ti, ui), of
trajector object ti and the trajectory ui of its movement.

It is assumed that each utterance is generated based on the stochastic gram-
mar G. The grammar G is learned by maximizing the likelihood of the joint
probability density function p(s, a, O;L,G), where L denotes a parameter set of
the lexicon. This function is represented by a graphical model with an internal
structure that includes the parameters of the grammar G and the conceptual
structure z that the utterance represents (Fig. 7).
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Fig. 7. Graphical model of lexicon and grammar

The conceptual structure used here is expressed with three attributes as the
elements in an image schema - [motion], [trajector], and [landmark] - that are ini-
tially given to the system, and they are fixed. For instance, when the image is the
one shown in Fig. 4 and the corresponding utterance is the sequence of spoken
words ”large Kermit brown box move-onto”, the conceptual structure might be⎡

⎣ZT [trajector] : large Kermit
ZL [landmark] : brown box
ZM [motion] : move-onto

⎤
⎦ ,

where the right-hand column contains the spoken word sub-sequences referring
to trajector, landmark, and motion, in a moving image. Let y denote the or-
der of conceptual attributes, which also represents the order of the constituents
with the conceptual attributes in an utterance. For instance, in the above ut-
terance example, the order is [trajector]-[landmark]-[motion]. The grammar is
represented by the set comprising occurrence probabilities of the possible orders
as G = {P (y1), P (y2), ..., P (yk)}. By assuming p(z, O ;L,G) is constant, the
joint log-probability density function is written as

log p(s, a, O ;L,G)

= log
∑

z

p(s|z ;L,G)p(a|z, O ;L,G)p(z, O ;L,G)

≈ α max
z,l

(
log p(s|z ;L,G) [Speech]

+ log p(u|ot,p, ol,p,WM ;L) [Motion]

+ log p(ot,f |WT ;L) + log p(ol,f |WL ;L)

)
. [Static Image of Object]

(1)
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where α is a constant value of p(z, O;L,G). Furthermore, t and l are discrete
variables across all objects in each moving image, and represent, respectively, a
trajector object and a landmark object. In addition, WM , WT , and WL are, re-
spectively, word sequences corresponding to the motion, trajector, and landmark
in the conceptual structure z.

The estimate G̃i of grammar G given ith learning data is obtained as the
maximum values of the posterior probability distribution as

G̃i = argmax
G

p(G |Di
g ;L) . (2)

where Di
g denotes learning sample set {(s1, a1, O1), (s2, a2, O2), . . . , (si, ai, Oi)}.

An utterance asking the robot to move an object is understood using the lexicon
L and the grammar G, and one of the objects in the current scene O is accord-
ingly grasped and moved by the robot arm. The algorithm that understands
speech s infers the conceptual structure z = (WT ,WL,WM ) and generates ac-
tion ã = (t̃, ũ) as

ã = argmax
a

log p(s, a, O ;L, G̃) . (3)

The robot arm is controlled according to the generated trajectory ũ.

6 Learning Pragmatic Capability Based on Coupling of
Belief Systems

6.1 Difficulty

As mentioned in Sec. 1, a pragmatic capability relies on the capability to infer
the state of another participant’s belief system. The computational mechanism
should enable the robot to adapt its assumption of shared beliefs rapidly and
robustly through verbal and nonverbal interaction. It also should control the
balance between transmissions of the meaning of utterances and the information
on the state of belief systems. The following is an example of generating and
understanding utterances based on the assumption of shared beliefs. Suppose
that in the scene shown in Fig. 4 the object on the left, Kermit, has just been
put on the table. If the user in the figure wants to ask the robot to move Kermit
onto the box, he may say, “Kermit box move-onto”. In this situation, if the user
assumes that the robot shares the belief that the object moved in the previous
action is likely to be the next target for movement and the belief that the box
is likely to be something for the object to be moved onto, he might just say
“move-onto”. To understand this fragmental utterance, the robot has to possess
similar beliefs. If the user knows that the robot has acted as he has asked in
response, he would strengthen the confidence that the beliefs he has assumed
to be shared are really shared. Inversely, when the robot wants to ask the user
to do something, the beliefs that it assumes to be shared are used in the same
way. We can see that the former utterance is more effective than the latter in
transmitting the meaning of the utterance, while the latter is more effective in
transmitting the information on the state of belief systems.
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functions

6.2 Representation of a System of Beliefs

To cope with the above difficulty, a system of beliefs needs to consist of the
following two parts:

Shared belief function, which represents the assumption of shared beliefs
and is composed of a set of belief modules with values (local confidence)
representing the degree of confidence that each belief is shared by the robot
and the user.

Global confidence function, which represents the degree of confidence for
the shared belief function.

Such a belief system is depicted in Fig. 8. The beliefs we used are those concern-
ing speech, motions, static images of objects, behavioral context, and motion-
object relationship. The behavioral context and motion-object relationship are
represented as follows.

Motion-object relationship BR(ot,f , ol,f ,WM ;R): The motion-object re-
lationship represents the belief that in the motion corresponding to mo-
tion word WM , feature ot,f of object t and feature ol,f of object l are
typical for a trajector and a landmark, respectively. This belief is repre-
sented by a conditional multivariate Gaussian probability density function,
p(ot,f , ol,f |WM ;R), where R is its parameter set.

Effect of behavioral context BH(i, q;H): The effect of behavioral context
represents the belief that the current utterance refers to object i, given be-
havioral context q. Here, q includes information on whether object i was a
trajector or a landmark in the previous action and whether the user’s current
gesture is referring to object i. This belief is represented by a parameter set H.



Robots That Learn Language 157

6.3 Shared Belief Function

The beliefs described above are organized and assigned local confidence val-
ues to obtain the shared belief function used in the processes of generating
and understanding utterances. This shared belief function Ψ is the extension of
log p(s, a, O;L,G) in Eq. 1. The function outputs the degree of correspondence
between utterance s and action a, and it is written as

Ψ(s, a, O, q, L,G,R,H, Γ )

= max
l,z

(
γ1 log p(s|z ; L,G) [Speech]

+γ2 log p(u|ot,p, ol,p,WM ; L) [Motion]

+γ2

(
log p(ot,f |WT ;L) + log p(ol,f |WL ;L)

)
[Static Image of Object]

+γ3 log p(ot,f , ol,f |WM ;R) [Motion-Object Relationship]

+γ4

(
BH(t, q ;H) + BH(l, q ;H)

))
. [Behavioral Context]

(4)

where Γ = {γ1, . . . , γ4} is a set of local confidence parameters for beliefs corre-
sponding to the speech, motion, static images of objects, motion-object relation-
ship, and behavioral context. Given O, q, L, G, R, H, and Γ , the corresponding
action, ã = (t̃, ũ), understood to be the meaning of utterance s, is determined
by maximizing the shared belief function as

ã = arg max
a

Ψ(s, a, O, q, L,G,R,H, Γ ) . (5)

6.4 Global Confidence Function

The global confidence function f outputs an estimate of the probability that the
robot’s utterance s will be correctly understood by the user, and it is written as

f(d) =
1
π

arctan
(

d − λ1

λ2

)
+ 0.5 , (6)

where λ1 and λ2 are the parameters of this function. Input d of this function is a
margin in the value of the output of the shared belief function between an action
that the robot asks a user to do and other actions in the process of generating
an utterance. Margin d in generating utterance s to refer to action a in scene O
under behavioral context q is defined as

d(s, a, O, q, L,G,R,H, Γ )
= Ψ(s, a, O, q, L,G,R,H, Γ ) − max

A �=a
Ψ(s,A, O, q, L,G,R,H, Γ ) . (7)
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The examples of the shapes of global confidence functions are shown in Fig. 9.
Clearly, a large margin increases the probability of the robot being understood
correctly by the user. If there is a high probability of the robot’s utterances being
understood correctly even when the margin is small, we can say that the robot’s
beliefs are consistent with those of the user. The example of a shape of such a
global confidence function is indicated by ”strong”. In contrast, the example of
a shape in the case when a large margin is necessary to get a high probability
is indicated by ”weak”. When the robot asks for action a in scene O under
behavioral context q, the robot generates utterance s̃ so as to bring the value of
the output of f as close as possible to the value of parameter ξ, which represents
the target probability of the robot’s utterance being understood correctly. This
utterance can be represented as

s̃ = arg min
s

(
f(d(s, a, O, q, L,G,R,H, Γ )) − ξ

)
. (8)

The robot can increase its chance of being understood correctly by using more
words. On the other hand, if the robot can predict correct understanding with
a sufficiently high probability, it can manage with a fragmental utterance using
a small number of words.

6.5 Learning Methods

The shared belief function and the global confidence function are learned sepa-
rately in the processes of utterance understanding and utterance generation.

The decision function is learned incrementally, online, through a sequence of
episodes, each of which comprises the following steps.

1. Through an utterance and a gesture, the user asks the robot to move an
object.

2. The robot acts on its understanding of the utterance.
3. If the robot acts correctly, the process is terminated. Otherwise, the user

slaps its hand.
4. The robot acts in a different way.
5. If the robot acts incorrectly, the user slaps its hand. The process is termi-

nated.
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The robot adapts the values of parameter set R for the belief about the
motion-object relationship, parameter set H for the belief about the effect of
the behavioral context, and local confidence parameter set Γ . Lexicon L and
grammar G were learned beforehand as described in the previous sections, and
they were fixed. When the robot acts correctly in the first or second trials, it
learns R by applying the Bayesian learning method using the information of
features of trajector and landmark objects ot,f , ol,f and motion word WM in the
utterances. In addition, when the robot acts correctly in the second trial, the
robot associates utterance s, correct action a, incorrect action A done in the
first trial, scene O, and behavioral context q with one another and makes these
associations a learning sample. When the ith sample (si, ai,Ai, Oi, qi) is obtained
based on this process of association, Hi and Γi are adapted to approximately
minimize the probability of misunderstanding as

(H̃i, Γ̃i) = arg min
H,Γ

i∑
j=i−K

wi−j g
(
Ψ (sj , aj , Oj , qj , L,G,Ri,H, Γ )

− Ψ (sj ,Aj , Oj , qj , L,G,Ri,H, Γ )
)
, (9)

where g(x) is −x if x < 0 and 0 otherwise, and K and wi−j represent the number
of latest samples used in the learning process and the weights for each sample,
respectively.

The global confidence function f is learned incrementally, online, through a
sequence of episodes that consist of the following steps.

1. The robot generates an utterance to ask the user to move an object.
2. The user acts according to his or her understanding of the robot’s utterance.
3. The robot determines whether the user’s action is correct.

In each episode, the robot generates an utterance that brings the value of
the output of global confidence function f as close to ξ as possible. After each
episode, the value of margin d in the utterance generation process is associated
with information about whether the utterance was understood correctly, and
this sample of associations is used for learning. The learning is done online
incrementally so as to approximate the probability that an utterance will be
understood correctly by minimizing the weighted sum of squared errors in the
most recent episodes. After the ith episode, parameters λ1 and λ2 are adapted
as

[λ1,i, λ2,i] ← (1 − δ)[λ1,i−1, λ2,i−1] + δ[λ̃1,i, λ̃2,i], (10)

where

(λ̃1,i, λ̃2,i) = arg min
λ1,λ2

i∑
j=i−K

wi−j(f(dj ;λ1, λ2) − ej)2, (11)

where ei is 1 if the user’s understanding is correct and 0 if it is not, and δ is the
value that determines the learning speed.
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Fig. 10. Changes in the values of local confidence parameters

6.6 Experimental Results

Utterance understanding by the robot. Sequence Dd of quadruplets (si, ai,
Oi, qi), i = 1, . . . , Nd, comprising the user’s utterance si, scene Oi, behavioral
context qi, and action ai that the user wants to ask the robot to perform, was
used for the interaction. At the beginning of the sequence, the sentences were
relatively complete (e.g., “green kermit red box move-onto”). Then the lengths of
the sentences were gradually reduced (e.g., “move-onto”) to become fragmental
so that the meanings of the sentences were ambiguous. At the beginning of the
learning course, the local confidence values γ1 and γ2 for speech, static images
of objects, and motions were set to 0.5, while γ3 and γ4 were set to 0.

R could be estimated with high accuracy during the episodes in which rela-
tively complete utterances were given and understood correctly. In addition, H
and Γ could be effectively estimated based on the estimation of R during the
episodes in which fragmental utterances were given. Figure 10 shows changes in
the values of γ1, γ2, γ3, and γ4. The values did not change during the first thirty-
two episodes because the sentences were relatively complete and the actions in
the first trials were all correct. Then, we can see that the value γ1 for speech
decreased adaptively according to the ambiguity of a given sentence, whereas
the values γ2, γ3 and γ4 for static images of objects, motions, the motion-object
relationship, and behavioral context increased. This means that nonlinguistic
information was gradually being used more than linguistic information.

Figure 11 (a) shows the decision error (misunderstanding) rates obtained dur-
ing the course of the interaction, along with the error rates obtained for the
same learning data by keeping the values of the parameters of the shared belief
function fixed to their initial values. In contrast, when fragmental utterances
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Fig. 12. Examples of actions generated as a result of correct understanding and the
weighted ouput log-probabilities from the beliefs, along with the second and third
action candidates, that led to incorrect actions

were provided all over the sequence of interaction, the learning was not effective
(Fig. 11 (b)) because the robot misunderstood the utterances too often.

Examples of actions generated as a result of correct understanding are shown
together with the output log-probabilities from the weighted beliefs in Figs. 12
(a) and (b), along with the second and third action candidates, which led to in-
correct actions. It is clear that each nonlinguistic belief was used appropriately in
understanding the utterances according to their relevance to the situations. Be-
liefs about the effect of behavioral context were more effective in Fig. 12 (a), while
in Fig. 12 (b), beliefs about the concepts for the static images of objects were more
effective than other nonlinguistic beliefs in leading to the correct understanding.

Utterance generation by the robot. A sequence of triplets (a, O, q) consist-
ing of scene O, behavioral context q, and action a that the robot needed to ask
the user to perform was given beforehand for the interaction. In each episode,
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Fig. 13. Changes in the global confidence function (a) and the number of words needed
to describe the objects in each utterance (b), ξ = 0.75
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Fig. 14. Changes in the global confidence function (a) and the number of words needed
to describe the objects in each utterance (b), ξ = 0.95

the robot generated an utterance so as to make the global confidence function
as close to 0.75 as possible. Even when the target value was fixed at 0.75, we
found that the obtained values were distributed widely around it. The initial
shape of the global confidence function was set so as to make f−1(0.9) = 161,
f−1(0.75) = 120, and f−1(0.5) = 100, meaning that a large margin was neces-
sary for an utterance to be understood correctly. In other words, the shape of
f in this case represents weak confidence. Note that when all of the values are
close to 0, the slope in the middle of f is steep, and the robot makes the decision
that a small margin is sufficient for its utterances to be understood correctly.
The shape of f in this case represents strong confidence.

The changes in f(d) are shown in Fig. 13 (a), where three lines have been
drawn for f−1(0.9), f−1(0.75), and f−1(0.5) to make the shape of f easily rec-
ognizable. The episodes in which the utterances were misunderstood are depicted
in the upper part of the graph by the black lozenges. Figure 13 (b) displays the
changes in the moving average of the number of words used to describe the ob-
jects in each utterance, along with the changes obtained in the case when f was
not learned, which are shown for comparison. After the learning began, the slope
in the middle of f rapidly became steep, and the number of words decreased.
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The function became temporarily unstable with f−1(0.5) < 0 at around the 15th
episode. The number of words then became too small, which sometimes led to
misunderstanding. We might say that the robot was overconfident in this period.
Finally, the slope became steep again at around the 35th episode.

We conducted another experiment in which the value of parameter ξ was
set at 0.95. Figure 14 shows the result of this experiment. It is clear that after
approximately the 40th episode the change in f became very unstable, and the
number of words became large. We found that f became highly unstable when
the utterances with a large margin, d, were not understood correctly.

7 Discussion

Sharing the risk of being misunderstood. The experiments in learning a
pragmatic capability illustrate the importance of sharing the risk of not being
understood correctly between the user and the robot. In the learning period for
utterance understanding by the robot, the values of the local confidence param-
eters changed significantly when the robot acted incorrectly in the first trial and
correctly in the second trial. To facilitate the learning, the user had to gradually
increase the ambiguity of utterances according to the robot’s developing ability
to understand them and had to take the risk of not being understood correctly.
In the robot’s learning period for utterance generation, it adjusted its utterances
to the user while learning the global confidence function. When the target un-
derstanding rate ξ was set to 0.95, the global confidence function became very
unstable in cases where the robot’s expectations of being understood correctly
at a high probability were not met. This instability could be prevented by using
a lower value of ξ, which means that the robot would have to take a greater risk
to be understood correctly.

Accordingly, in human-machine interaction, both users and the robots must
face the risk of not being understood correctly and thus adjust their actions
to accommodate such risk in order to effectively couple their belief systems.
Although the importance of controlling the risk of error in learning has generally
been seen as an exploration-exploitation trade-off in the field of reinforcement
learning by machines (e.g. [36]), we argue here that the mutual accommodation of
the risk of error by those communicating is an important basis for the formation
of mutual understanding.

Partiality of information and fast adaptation of function. An utterance
includes only partial information that is relevant to what a speaker wants to
convey to a listener. The method interpreted such an utterance by using the
belief system under a given situation, and this enabled the robot and the user
to adapt to each other rapidly.

In the field of autonomous robotics, the validity of the architecture in which
sub-systems are allocated in parallel has been shown [37]. This architecture can
flexibly cope with two problems faced by systems interacting with the physical
world: the partiality of information and real-time processing [38]. On the other
hand, statistical inference using partial information has been studied intensively,
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particularly in the research on Bayesian networks [39], in which parallel connec-
tion of sub-systems is not necessarily important.

The shared belief function Ψ is a kind of Bayesian network in which a small
number of weighting values Γ are added to some nodes, and it has an architecture
with belief modules allocated in parallel as shown in Eq.4. Due to this structure
of the belief system, the method could successfully cope with the partiality of
information and enable rapid and robust adaptation of the function by changing
weighting values.

Initial setting. No free lunch theory [40] shows that when no prior knowledge
on a problem exists, it is not possible to assume that one learning algorithm is
superior to another. That is, there is no learning method that is efficient for all
possible tasks. This suggests that we should pay attention to domain specificity
as well as versatility.

In the methods described here, the initial setting for the learning was decided
by taking into account the generality and efficiency of language learning. The se-
mantic attributes – [motion], [trajector], and [landmark] – were given beforehand
because they would be general and essential in linguistic and other cognitive pro-
cesses. With this setting, however, the constructions the method could learn were
limited to those like transitive and ditransitive ones. Overcoming this limitation
is a future work.

Integrated learning. In the method, speech units, lexicon, grammar, and prag-
matic capability were learned step-by-step separately. These learning processes,
however, should be carried out simultaneously. In developmental psychology, it
has been shown that a pragmatic capability facilitates the process of learning
other linguistic knowledge, such as the specification of referents in word learning
[41]. The computational mechanism for such cognitive bootstrapping should be
pursued.

Prerequisites for conversation. Language learning can be regarded as a
kind of role reversal imitation [42]. To coordinate roles in a joint action among
participants, they should read the intentions of the others. It is known that
in the very early stage of development infants become able to understand the
intentional actions of others [43] and even to understand that others might have
beliefs different from the ones held by themselves [44].

The method described here enabled the robot to understand the user’s ut-
terances, act, and make utterances to ask the user to act. The roles in this
speak-and-act task, however, were given to the robot and the user beforehand,
and they knew it. For the robot to learn the conversational (speak-and-speak)
capability, the robot should find its role in a joint action by itself and coordinate
it with the user.

Psychological investigation. The experimental results showed that the robot
could learn the system of beliefs that the robot had assumed the user had.
Because the user and the robot came to understand fragmental and ambiguous
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utterances, they must have shared similar beliefs and must have been aware of
that. It would be interesting to investigate through psychological experiments
the dynamics of belief sharing between users and robots.

8 Conclusion

A developmental approach to language processing for grounded conversations
was presented. It can cope with two major requirements that existing language
processing methods cannot satisfy: a scalable grounded symbol system and belief
sharing. The proposed method enabled a robot to learn a pragmatic capability
online in a short period of verbal and nonverbal interaction with a user by rapid
and robust adaptation of its grounded belief system.
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Abstract. In this article, we study the emergence of associations between words
and concepts using the self-organizing map. In particular, we explore the meaning
negotiations among communicating agents. The self-organizing map is used as a
model of an agent’s conceptual memory. The concepts are not explicitly given but
they are learned by the agent in an unsupervised manner. Concepts are viewed as
areas formed in a self-organizing map based on unsupervised learning. The lan-
guage acquisition process is modeled in a population of simulated agents by using
a series of language games, specifically observational games. The results of the
simulation experiments verify that the agents learn to communicate successfully
and a shared lexicon emerges.

1 Introduction

The acquisition of concepts can be viewed as the process of grounding them in language
use. How do concepts form, to begin with, when no language exists in the environment?
The relationship between cognitive and linguistic development can be pinpointed to the
question: how do conceptual emergence and the formation of names for the concepts
connect? An associated important question is how an agreement on the use of words is
reached in a community of agents. This process of converging towards a shared use of
words is called meaning negotiation.

We study the emergence of associations between concepts and words with help of a
computer simulation and consider the hypothesis that concepts are modeled as areas in
some conceptual space (see [1]). Furthermore, we utilize the self-organizing map [2,3]
as a model for an agent’s conceptual memory [4]. The feasibility of this conceptual
memory model is then studied using multi-agent language games, in which agents learn
to associate words to meanings in a communicative setting. Prior to learning word-
meaning-associations, a conceptual representation is also learned individually by each
agent based on sensory data.

1.1 Concept Formation

To be able to model conceptual representations in a cognitive framework, we are using
the conceptual spaces theory [1]. According to the theory, concepts can be modeled
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as geometrical areas in a multidimensional conceptual space rather than as symbols or
connections among neurons. Gärdenfors proposes that certain neural network or statis-
tical methods, e.g. multi-dimensional scaling or self-organizing maps can be used as a
basis for a domain in a conceptual space [1]. It is assumed that concepts are not innate
but learned in interaction with the world (consider e.g. [5]).

The self-organizing map (SOM) [3] is a neural network model developed originally
in the early 1980s [2]. The SOM model is widely known and the details are not pre-
sented here. More information can be found in [3].

We use the self-organizing map as an implementation of a conceptual memory. A do-
main of a conceptual space of an agent is represented by a self-organizing map trained
with observation data. Color data, the RGB values of color pictures, are used for training
of the map. Following Gärdenfors’ vocabulary, there are then three quality dimensions
in this domain of the conceptual space: R(ed), G(reen) and B(lue). The individual self-
organizing maps are trained with the color data prior to the language acquisition. After
the initial training of the SOM, the map is not changed. This corresponds to a situa-
tion in which a child initializes its feature representations based on natural visual data.
When an object (color vector) is perceived during the simulation, it is mapped to the
trained SOM by finding a unit whose distance to the perceived input is the smallest.
This map node is the best-matching unit (BMU) [3]. In our experiments, a cognitive
agent does not have any initial ordering or access to the inputs and thus the initializa-
tion of the self-organizing map is random. The objects that the agents see belong to
eight different categories: What the agents perceive are slightly different instances of
these categories. This differs from previous approaches, e.g. [6], where the meanings
are presented simply as integers.

The meaning of a word is taken to be a node or a group of (neighboring) nodes in
a self-organizing map. Thus, the word is not directly associated with ’something in the
world’, the referent, which in our case is the perceived data vector but to a represen-
tation: The representation of the data vector is the best-matching unit (BMU) in the
map.

The association between a word and a concept is implemented by assigning a word
to a certain node in a conceptual map. The mapping between words and conceptual map
nodes is many-to-many. A node may have several words associated with it and a word
may be associated with several nodes. We make a hypothesis that a general agreement
among the agents on the word use emerges during the simulation.

1.2 Language Games

To model the language acquisition process, we are using simulated language games
based originally on the notion of Wittgenstein [7]: Every occasion of language use
is a language game. In a language game there is a dialogue between two agents, a
speaker and a hearer, within a particular contextual setting. It offers a possibility to
study the cultural evolution process of language in subsequent language games instead
of subsequent agent generations.

There are several types of simulated language games that have been tested within this
framework. Here, we briefly present three of them, the observational game, the guessing
game and the selfish game. So far, we have implemented only the observational game in



170 T. Lindh-Knuutila, T. Honkela, and K. Lagus

which both agents know in advance the topic of the game. The learning is associative:
The hearer agent learns the name the speaker uses for that topic.

In the guessing game, both agents are presented a small number of objects. The
hearer must then guess which object is the one the speaker refers to with the word
it uttered. In the end of the game, the speaker gives some corrective feedback to the
hearer telling whether the guess was right or not. In the selfish game introduced by
Vogt [8] and Smith [9], the agents do not receive any feedback of the success of their
communication. Thus, the learner must infer the meanings of words from their co-
occurrences in different contexts or situations. The game is called ‘selfish’ as in some
way the speaker does not care whether the message was correctly understood.

1.3 Related Work

In the domain of concept acquisition modeling, Schyns [10] demonstrated how simple
concepts could be learned with a modular neural network model. The model has two
modules, one for categorizing the input in an unsupervised manner and another module
for learning the names in a supervised mode.

Cangelosi and Parisi [11] as well as Grim et al. [12] use feedforward multilayer
neural networks whereas we use self-organizing maps [2,3]. Oudeyer [13] models the
self-organization of combinatoriality and phonotactics in vocalization systems with a
neural network model that is close to the self-organizing map, without any dimension-
ality reduction. The self-organizing map is based on an unsupervised learning principle
which makes it possible to learn efficiently statistical characteristics of input even when
no interpretation or classification for the input is given. In a related work [14], the self-
organizing maps are used to model the semantic representations of action verb meanings
and their clustering, depending on the body part they are related to. Raitio et al. [15]
consider the similarity of representations that emerge in unsupervised, self-organization
process of neural lattices when exposed to color spectrum stimuli. Self-organizing maps
are trained with color spectrum input, using various vectorial encodings for representa-
tion of the input. Furthermore, Raitio et al. use the SOM for a heteroassociative mapping
to associate color spectrum with color names.

The language game models discussed here were introduced by Steels [16] to study
how a coherent lexicon may emerge by means of cultural interactions, individual adap-
tation and self-organization. The games have been simulated, e.g., in [9], [16], [17] and
[18], or implemented in a population of physical robots, e.g., in [8] and [19].

Our work on the multi-agent learning borrows much from the research on the ob-
servational games by Vogt [6,17,8]. Our specific contribution is a detailed model for
how perception-to-concept mapping can take place. In [6], there is no categorization at
all. In [17], there is a spatial conceptual space which would allow variation around the
prototype, but only prototypical colors are used in the simulated world. In our work, we
are using the self-organizing map as a spatial conceptual representation, and the colors
the agents can perceive contain variation around the prototypes. This means that the
mapping between perceptions and concepts is many-to-one: the agents are performing
categorization as well.

Learning concepts and language simultaneously is considered in [17]. In our work
the conceptual information is learned prior to learning the word-meaning-associations.
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This choice does not reflect a position according which language does not influence the
formation of conceptual structures. In these experiments, our aim was to consider a situ-
ation in which there is originally little or no categorical information available. Simulta-
neous and continuous learning of conceptual structures and word-meaning-associations
would be possible, for instance, by using the self-refreshing self-organizing map [20].

In [17], the compositionality of language is mainly studied using the iterated learn-
ing model (ILM) [21] that contains subsequent generations of adult and child agents.
The adults are mainly the teachers and the children are the learners of the emerging
language. Neither the ILM or the compositionality of language is considered here.

2 Methodology

We implemented the observational game model to study our hypotheses of concep-
tual modeling and grounding concepts in the language use. In an observational game
both agents know in advance the topic of the game. In Vogt’s and Steels’ robotic ex-
periments this was accomplished by pointing, and later in simulations by using other
extra-linguistic information. Our solution is that the agents are able to perceive only one
object at the time and this is the topic of the language game. These objects and their
properties used in our simulations are presented in more detail later.

Each agent has a conceptual memory based on a SOM and a lexicon. The lexicon
contains all words that are in the agent’s vocabulary, and information on which nodes of
the SOM they are associated to. It also contains a counter value for the word-node pair
describing how successfully a word has been used to express a meaning previously. The
minimum value of the counter is zero and the maximum value we have used is twenty.

2.1 Algorithm of the Observational Game

Each language game in the simulation proceeds in the following way.

1. Two agents are chosen randomly from the population of agents. One is arbitrarily
assigned the role of the speaker, the other the hearer.

2. The topic of the language game is chosen randomly from the set of topics and
shown to both agents.

3. Both the speaker and the hearer search for a node in their own conceptual map that
best matches the topic (the BMU).

4. The speaker searches for the word that could match the topic. The search is per-
formed in a neighborhood of the best-matching unit (BMU) defined by R, which is
an integer, R ≥ 1. The process of the word search is described later in more detail.
If no possible word is found, a new word is invented and associated to the BMU.
This word is communicated to the hearer.

5. The hearer searches for a set of possible words that could denote the topic. The
search is performed in a similar way as in the case of speaker, but instead of one
best word, all the words that are found are returned. If the word the speaker has
uttered belongs to this set, the language game is considered a success, otherwise
the game fails.
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6. In case of a successful game, both the speaker and the hearer increase their counter
for the word by one. If the uttered word was not among the labels of the BMU, it is
then added to it. The maximum value of the counter is set to 20.

7. If the game fails, the speaker decreases by one the counter of the uttered word. The
minimum value allowed for the counter is zero. If the speaker’s BMU node did not
contain any label but the word was instead found from the neighborhood, the word
is not added to the BMU node of the speaker. The hearer labels its BMU with the
spoken utterance in any case.

2.2 Utterances

In the simulation framework, each word is a discrete symbol. A word is a string of
characters generated from a simple artificial language and it is uttered when needed. If
there does not exist a word that could be used to denote the topic of the conversation, a
novel word is generated from the language.

In our experiments, a limited artificial language is used. In this language, there are
words that contain either four or six characters. The alphabet contains vowels V =
(a, e, i) and consonants C = (b, c, d, f, g, h). In total, the alphabet consists of nine
letters. Each word of this language begins with a consonant which is then followed by
a vowel. The pattern is repeated either once or twice, so all the words are either of the
form ’CVCV’ or ’CVCVCV’.

In many previous simulations, e.g., [11], the set of words that could be used was
small and fixed. In these simulations the set of words is finite but open: new words can
enter to the simulation, whereas the number of topics of the language games is fixed.

2.3 Word Search Process Using the SOM

When an agent is shown the topic, i.e. the vector containing the features of the topic, it
finds a prototype vector from its conceptual memory that best matches the given input
vector. This prototype vector is called the best-matching unit (BMU). The prototype
vectors can be assigned labels, the words. The search algorithm searches for words used
to label the BMU and nearby nodes that are within the radius R in the neighborhood of
the BMU. This means that if there already exists a word associated to a similar enough
concept (i.e. there is a word in the neighborhood R of the node), this word can be used
to name the new object even if the BMU itself was not associated with any word. As
the neighborhood is considered, later in the simulation there are often several possible
words the speaker could use. The uttered word is the one that had been used most
successfully earlier in the neighborhood of the BMU, defined by the counter values
associated to each word-node pair. In case of multiple words with the same count, one
of them is selected randomly. If the set of words is empty, a new word is generated and
uttered.

The hearer searches for the possible words in a similar way to the point of finding
a set of words. The only difference is that there is no need to select the best word but
the set of possible words is compared to the word uttered by the speaker. In general, the
competing word-meaning pairs are considered to be either synonymous or polysemous,
both being features of natural languages as well. Here synonymy is considered as a
relative term: words or phrases may have similar meaning to some degree.
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3 Experiments

The purpose of our experiments was two-fold: The first goal of the experiments was to
verify the hypothesis that the agents are able to develop an emergent and shared lexicon
by engaging in the language games, while using the conceptual memory model based on
the self-organizing map. Secondly, we were studying the association between the map
nodes and the utterances created by agents and how the areas that are named with the
same word are formed. To test how the varying parameters affect the overall learning
results, experiments were conducted with different population sizes and varying the
search radius.

In all experiments, ten simulations were run with different random seeds for 5000
language games. There were three measures used to evaluate the outcome of the sim-
ulations. The communication success was calculated after every language game. The
coherence and specificity measures were calculated after every 250 games, and the size
of the lexicon was calculated in the end of the simulation. The coherence measure indi-
cates whether a certain word is utilized coherently among the agents to denote a certain
meaning in the community. Specificity is a measure that decreases if two meanings are
referred to with the same word. These measures are explained later in more detail.

3.1 Color Data and Language Game Topics

The agents’ conceptual maps were trained with three-dimensional color data vectors.
Components of the vector were R(ed), G(reen) and B(lue) values of a pixel in a color
picture. The color data consisted of ten pictures — one for each agent. The size of these
pictures was 100×100 pixels. Thus, for each agent, the size of the training set was
10000 samples, the total number of pixels in the training picture.

The color pictures were created by drawing filled ellipses and rectangles in color
onto a white background. As a starting point, we were using the RGB values of eight
different ’prototypical’ colors: black, blue, green, cyan, red, magenta, yellow and white.
To get less spiky distributions for each color, uniformly distributed noise was added
independently to each of the three color channels (RGB) of the picture. The level of
noise was set to 20% of the total color range.

In the experiments, a hexagonal map topology was used. The size of the used map
was 16×12 map nodes. The maps were initialized randomly. All the maps were trained
in a batch training mode. [3]

A set of 400 additional color pictures were utilized as language game topics. They
were generated in similar manner as the training data, but were not part of the training
set. For the purpose of limiting computational workload, the size of a picture used as a
topic was limited to 20×20 pixels. The topic was chosen randomly from this group for
each game.

3.2 Evaluation Measures

To evaluate the agent learning, we utilized four measures: communication success, co-
herence, specificity and lexicon size.

In a successful language game, the word the speaker used to denote a given topic was
found among the words that also the hearer associated with the topic. Communication
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success is a longer-term outcome of the language games. It is defined in a similar way
as in [6,8,18] as the average number of correctly played games in the past 100 games
or less if no 100 games had been played yet. It is calculated after every language game.

Coherence is a population measure, which measures whether a certain word is uti-
lized coherently among the agents to denote a certain meaning in the community. It is
the rate in which agents would produce a certain word to express a particular meaning.
The coherence measure calculation used in this work is taken from [18]. For each topic,
a fraction of agents that has the same word as a preferred word is calculated and the
maximum fraction is taken. This is then averaged over all topics. If an agent does not
have a word to express a certain meaning, the coherence is set to zero.

Specificity measure developed by De Jong was used: “Specificity indicates to what
degree the words an agent uses determine the referent that is the subject of communi-
cation” [18]. Specificity decreases if two meanings are referred to with the same word.
Thus it also describes the degree of polysemy in the lexicon: the higher the specificity,
the less polysemy there is. Here, the specificity based on preferred words [18] is used.

For each agent, Ai, the specificity, spec(Ai), is calculated using the following
formula:

spec(Ai) =
n2

s −
∑ns

k=1 fk

n2
s − ns

, (1)

where ns is the number of referents, and fk is frequency of the word related to the
concept that describes how many referents the word is associated to. The specificity of
the population, spec, is then defined as the average specificity of the agents:

spec =
∑na

i=1 spec(Ai)
na

, (2)

where spec(Ai) is the specificity of an agent and na is the number of agents. Addition-
ally, if there is no word to denote a certain referent (or topic), it means that the referent
cannot be separated from other referents.

In the end of each simulation run, the average size of lexicon was also calculated.
In the lexicons, there were also words having a zero counter value, which means that
they were not used successfully at all in the course of the simulation. This means that
an agent had come up with a new word but this word had not been used successfully
and another one had been preferred since. To better show the difference in lexicon sizes,
the average size of the lexicon was calculated both before and after the removal of the
non-used words. The average lexicon size was calculated as a mean of individual agent
lexicon sizes.

4 Results

In all our experiments, the results were averaged over 10 simulation runs. All simu-
lations were run for the population sizes of 2, 4, 6, 8 and 10 agents. The results with
varying population size are presented in Fig. 1. The communication success (Fig. 1 a)
climbs quickly close to the maximum value of 1.0. The communication success level
1.0 indicates that each of the previous 100 language games ended successfully. The
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Fig. 1. Communication success (a), coherence (b), specificity (c) and the lexicon size (d) for
varying population size, when R = 2 and the map size is 16 × 12

larger the population is, the longer it takes to reach the maximum level, but even in the
case of 10 agents the level of 0.9 is reached after approximately 1250 games.

The coherence level (Fig. 1 b) increases also quite rapidly. In the case of population
size of 10 agents, the coherence level reaches 0.86, whereas with smaller population
sizes it is 0.9 or higher. Thus, as simulation advances, the agents begin to use more and
more the same word to denote the same referent, thus forming a shared vocabulary. As
pointed out earlier, the coherence does not say anything whether the agents are using
the same word to denote each referent. The specificity (Fig. 1 c), rises over 0.9 already
after 250 games with each population size. Thus, there seems to be little polysemy in
this case: The agents are using a separate word for each prototypical color.

The average size of the lexicon (Fig. 1 d) stays between 10 and 17, rising only a
little as a function of the population size. The whiskers describe the amount of standard
deviation in the average values. The size of the lexicon, all words included, is a function
of the population size.

The results seem promising: They clearly show that the agents can develop a shared
lexicon to denote the objects they perceive. The size of the population seems only to
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affect on how quickly the communication success and coherence levels grow. The rea-
son behind this is that in larger populations, it takes longer for the whole population to
develop a common vocabulary, as in each language game, there are always only two
agents playing. As such, though, the relationship between population size and learning
speed is known well through a number of earlier studies.
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Fig. 2. The specificity values when the search radius was changed

To study how the size of the search radius, R affects the results we repeated the
experiment using varying search radii. The communication success and coherence be-
haved similarly to the previous experiment. Communication success and coherence
values increase rapidly as more language games are played. The specificity measure
reveals something interesting (see Fig. 2 presenting results of using six agents). With
the smaller radii, the specificity rises again over 0.95 after only 500 language games.
But when using the largest radius, R = 4, the specificity first rises to the level of 0.4
and then drops to the level of 0.3 as the simulation advances: This indicates that in the
beginning of the simulation there is some variation in the names for the language game
topics. As the simulation advances only few names are gaining popularity: In the end
the agents use only a couple of names to denote all the topics.

Examples of conceptual maps from simulations with six agents are shown in Fig. 3.
They show the conceptual space of one agent after the simulation run. The self-
organizing map is labeled with the words that have been used during the simulation.
The figure on the left shows a case where R = 1 and in the figure on the right, R = 4.
A thorough visual interpretation of these figures may be hard since the language is made
up by the agents themselves and in the each simulation run, the self-organizing maps
look different due to random initialization. Thus, they are shown for general interest
only. In the map on the right, there is one dominant word, ’bihi’ that is used to label al-
most everything. In the figure on the left-hand side, there are different words that seem
to be dominant in different areas. By only inspecting the visualization of the map, it is
impossible to say which words are used the most.

The low specificity value does not affect the communication success at all. The
agents just have one or two common words to denote everything. The large search
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Fig. 3. Two example conceptual maps from simulations with six agents. On the left, a small search
radius, R = 1, was used. On the right, R = 4. The shades of gray denote distances in the original
space: The larger the distance, the darker the color. One can see that there are eight clusters on
each map which corresponds to the number of prototypical colors used in the input.

radius makes it possible to use a word already in the lexicon for observed topics, even if
the best-matching unit related to that word is very far from the new observation. This is
caused by the nature of the observational game: There is no need to make distinctions
between observations and thus nothing is inhibiting this behavior, as communication
success stays high, which was also noticed by Vogt (e.g., [6]).

5 Conclusions and Discussion

In this article, some aspects of language acquisition and conceptual modeling have been
considered. In the field of conceptual modeling, the conceptual spaces theory by Gär-
denfors [1] has been adopted. The theory provides a medium between the symbolic
level of words and the sensory level of ’raw’ sensations. The notion of distance pro-
vides a possibility to make graded conceptual system: The more prototypical instances
of a concept can be seen as more central than the less prototypical instances of the
category.

We have described how simulated agents map the perceptions to their conceptual
map and associate utterances to these maps. The topological ordering of the maps
gives rise, for instance, to a rather natural way for finding names for previously un-
named topics. As a model for shared vocabulary acquisition, different types of lan-
guage games were discussed in this article. A computer simulation to model one of
them, the observational game, was implemented based on the work presented in [6], [8]
and [16].

The results of the experiments show clearly that when using the observational game
model and the SOM-based conceptual maps (1) the agents learned to communicate suc-
cessfully on the topics of the games, and (2) a shared lexicon was developed during the
simulations. According our definition of successful communication, the agents are also
able to communicate successfully and develop a shared lexicon based on adaptation.
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Implementing the guessing game and the selfish game described in Section 1.2 in ad-
dition to the observational game, would be useful. The language is somehow redundant
in the observational game framework: Both the speaker and the hearer know for sure
what the topic of the game is and there is no need to have distinct words to separate dif-
ferent objects. One could study if the need to be able to identify the topic from a group
of objects is a pressure enough to prevent the agents of calling all referents with the
same word as demonstrated in our experiment using a large search radius. Even though
comparisons between the different games have been conducted earlier (e.g., [6,17]),
we find it important to determine how the use of the SOM-based conceptual memory
influences the results in the case of the other two language games.

In future research, the use multiple maps can be be studied, each for a different con-
ceptual domain (consider, for instance, [14]). In that kind of model, a more complex
concept say ’apple’, would have properties in different domains, for instance, ’green’
(or ’yellow’, or ’red’) in the color domain, ’round(ish)’ in the shape domain, and ’sweet’
in the taste domain. Gärdenfors [1] argues that the properties that are relevant in the
case of a particular concept depend on the context. The context-dependency would then
cause some properties to be more salient in that context. It is possible that these salien-
cies could be modeled with some kinds of weights. Possibly, the research could be
expanded further to somewhat complex concepts: to those with properties extending to
different domains of conceptual spaces.
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Abstract. We suggest that the primary motivation for an agent to con-
struct a symbol-meaning mapping is to solve a task. The meaning space
of an agent should be derived from the tasks that it faces during the
course of its lifetime. We outline a process in which agents learn to
solve multiple tasks and extract a store of “cumulative knowledge” that
helps them to solve each new task more quickly and accurately. This
cumulative knowledge then forms the ontology or meaning space of the
agent. We suggest that by grounding symbols to this extracted cumu-
lative knowledge agents can gain a further performance benefit because
they can guide each others’ learning process. In this version of the symbol
grounding problem meanings cannot be directly communicated because
they are internal to the agents, and they will be different for each agent.
Also, the meanings may not correspond directly to objects in the envi-
ronment. The communication process can also allow a symbol meaning
mapping that is dynamic. We posit that these properties make this ver-
sion of the symbol grounding problem realistic and natural. Finally, we
discuss how symbols could be grounded to cumulative knowledge via a
situation where a teacher selects tasks for a student to perform.

1 Introduction

Where do meanings come from? This is one of the most important questions
underlying the study of cognition, language, and artificial intelligence. In the
field of artificial intelligence, the intellectual history of this problem traces back
to the earliest speculations on the nature of intelligence 1. Alan Turing, in the
conclusion to his classic article which introduced the Turing test, suggested that
there might be at least two routes to building intelligent machines: attempting
very abstract activities like playing chess, or outfitting a computer with sensory
devices and then attempting to teach it natural language [2]. In subsequent years
the purely symbolic approach gained dominance, partly due to the comparative
ease of building purely symbolic systems, and partly due to the influence of the

1 It should be pointed out that this question has a much longer history in philosophy.
See, e.g., [1] for a review.
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Physical Symbol System Hypothesis of Newell and Simon [3], which says that a
set of symbols, combined with appropriate rules for their manipulation (essen-
tially, a formal system), is sufficient for general intelligent action. The implicit
assumption underlying this view is that intelligent behavior from a machine does
not require that the machine “understand” things in the same way as we do.

In response, Searle argued, using his famous Chinese Room Argument, that
there is a distinction between intelligent behavior and true intelligence [4]. A
person could undertake the Turing test in a language unknown to him (say,
Mandarin), if he possessed an appropriate program. This program would be
a set of rules for manipulating symbols in Mandarin, which he would use to
transform questions into answers, and thereby pass the Turing test (if the rules
are good enough). Since the person does not know Mandarin, the symbols have
no meaning for him, though it would appear so to the observer. Intuitively, it
seems, a machine using this program would not be truly intelligent.

In an attempt to bridge this gap between a symbolic system and a truly
intelligent system, Harnad formulated the symbol grounding problem. In his
words, the problem is thus, “How can the semantic interpretation of a formal
symbol system be made intrinsic to the system, rather than just parasitic on
the meanings in our heads?” [5]. Though this problem arose in the context of
the limitations of purely symbolic systems in cognitive modeling, it was realized
to be of fundamental importance in the study of language evolution and the
design of artificial languages. Symbol grounding, in this context, concerns the
problem of relating the conceptualizations underlying a linguistic utterance to
the external world through an agent’s sensori-motor apparatus [6].

Harnad suggested that the symbol grounding problem could be solved by
building a hybrid symbolic-nonsymbolic system in which symbolic representa-
tions are grounded bottom-up in non-symbolic representations which are ei-
ther iconic or categorical. Iconic representations correspond directly to objects
and events, and categorical representations are based on generalizations from
iconic representations (i.e. concepts such as “animal”, which do not have direct
real-world analogs). This highlights one very important aspect of the symbol-
grounding problem: it is concerned with ontology construction. However it
ignores another, equally important, aspect: a symbol is a convention between
two (or more) agents. Thus it makes no sense for a single agent to try to ground
symbols. Further, ontology construction and the construction of a correspond-
ing symbolic system (i.e. lexicon acquisition) are inter-dependent. A new symbol
might be created for a new ontological category. Conversely, a new ontological
category may be created in response to the use of a symbol by another agent.

This interdependence between symbols and meanings has been understood
and incorporated in subsequent work on lexicon acquisition and symbol ground-
ing, most clearly in the well-known series of Talking Heads experiments. See [7]
for a review of these and other experiments based on language games. The main
issue we have with these experiments is that they consider the development of
a shared lexicon to be the primary task in which the agents are engaged. Thus,
in these experiments, meanings are created primarily through the process of the
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language game. The argument of this paper, however, is that meanings should
be derived from the tasks that a cognitive agent is faced with in the course of its
lifetime. Otherwise they will have no relevance to the agent. In other words, the
agent will have the means but not the need to communicate. In what follows, we
outline a method for combining the processes of solving multiple problems, and
developing a grounded symbolic communication system to aid problem-solving.

We first discuss the process of ontology construction, and how an ontology
might be extracted from the process of learning to solve multiple related prob-
lems. We call this process cumulative learning, because the knowledge extracted
from the tasks accumulates over time. Since each agent extracts its own cumu-
lative knowledge, these meanings are entirely internal to the agent. We then
discuss how it might be possible to ground symbols to this cumulative knowl-
edge, followed by a discussion of some of the consequences of this process. In
the concluding section, we discuss some of the advantages and limitations of our
approach, and possible future work.

2 Ontology Construction

An ontology determines the domain of discourse, i.e. what a language talks
about. From the point of view of an agent, these are the entities that are relevant
to the problems or tasks with which it is confronted. The ontology of an agent
in a mushroom world, e.g., might contain types of mushrooms, features (such
as color, size, and shape) by which these might be distinguished, etc. It might
also contain more abstract concepts, like “edible”, “poisonous”, etc. [8]. Some
of these ontological entities might be pre-specified, the result of processes like
biological evolution or engineering design. Other entities would be discovered by
the agent as it learns to perform the task of distinguishing edible from poisonous
mushrooms. This is a primary task for the agent, and each agent could try to
solve this task in isolation. However, they clearly stand to gain by developing a
language to communicate about these concepts:

– an agent, Alice, who is proficient in distinguishing edible mushrooms from
inedible ones, might communicate to another agent, Bob, whether a partic-
ular mushroom is edible,

– Alice might be able to teach Bob to distinguish edible mushrooms from
poisonous ones himself, assuming he has the same ontology,

– Alice might be able to help Bob acquire the necessary ontological categories
for distinguishing edible mushrooms from poisonous ones.

The point is that the ontology emerges from the primary task, though its
acquisition might be facilitated by the secondary task of language acquisition.
Thus the meanings in a lexicon must have some functional significance for the
agent. This is an aspect of language evolution that is missing from most previous
work on symbol grounding, with some exceptions [8,9].

Over its lifetime, an agent is expected to encounter many tasks, which might
be related to each other. Ideally, the agent should not just learn to solve each
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task, but should also learn how to learn. In other words, if the tasks are related,
the agent should be able to improve its learning performance, exhibiting quicker
and more robust learning on each new task. This is a subject of much research
in the machine learning community and is known variously as transfer learning,
multi-task learning, lifelong learning, etc. Generally the improvement in learning
performance is achieved by using some learnt information, such as invariants,
priors, etc., to bias the learning of new tasks. Our suggestion here is that this
learnt information, which we call cumulative knowledge, could form the ontology
of the agent. We discuss this in more detail below.

3 Cumulative Learning

We use the term cumulative learning to refer to the case where an agent explicitly
accumulates a store of knowledge that is extracted from solving multiple tasks
and is useful for solving new tasks. The key issue in cumulative learning is that
of recognizing, and exploiting, similarities between tasks. That human language
is efficacious in this process is suggested by studies of analogical thinking in
problem solving [10]. In fact, it has been argued that analogy-making is the core
of cognition [11].

A cumulative learning system consists of two parts: a learning mechanism
and a knowledge extraction mechanism. These two mechanisms could conceiv-
ably use two different representations: effectively a task-dependent, and a task-
independent representation, e.g. the learning mechanism could be a recurrent
neural network, and knowledge could be extracted in the form of finite state au-
tomata [12]. People have also attempted to combine feed-forward neural networks
with symbolic rules [13]. However, the drawback to these approaches is that there
is always the possibility of translation noise. A recurrent neural network, e.g.,
is capable of embedding some context-free and context-sensitive grammars [14],
and therefore attempting to represent the learnt recurrent net as a finite-state
automaton might create errors.

Other approaches attempt to directly transfer parts of the learned neural
network, such as the first layer of weights. The idea is that these might represent
features that are useful for multiple tasks [15,16]. The limitation of this approach
is that knowledge transfer is only possible within-domain, because if the neural
networks do not have the same dimension, it is not possible to reuse the weights.

To get around these two problems, we have presented a cumulative learning
method that uses graph-structured representations [17]. Learning is done with
a genetic algorithm, and knowledge is extracted by mining frequent subgraphs.
The idea is that these frequent subgraphs can be used as primitives by the ge-
netic algorithm in the construction of candidate solutions for new tasks, thereby
learning faster. Since these networks do not have fixed dimension, we avoid the
inflexibility of neural networks. We tested this idea on a set of Boolean function
domains. The domains are parameterized by their dimension, n, and the tasks
are parameterized by the number of adjacent 1’s, k, that must be present in
the input for a positive example. For example, a task might consist of inputs of
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Fig. 1. The left box shows networks learned on the first three tasks (4inputs-2adj-
ones, 8inputs-2adj-ones, and 8inputs-3adj-ones). The middle box shows 4 of the 18
subnetworks, extracted by the graph-mining algorithm CloseGraph [18], which appear
in at least two of the networks on the left. These would constitute the “meanings” for
symbolic communication. The right box shows the network learned for the 12inputs-
2adj-ones task, in which some of the subnetworks are seen to appear several times.

dimension four, where an input is classified as positive if two adjacent 1s appear
in the input vector. We name this task 4inputs-2adj-ones.

Initially, the agents have a very small set of primitives, consisting of just single
nodes that compute the AND, OR, and NOT functions. During the cumulative
learning process, they extract many more primitives which are small networks
that can be combined together to solve many tasks. This is illustrated in figure
1. The left box in the figure shows the networks learnt on the first three tasks:
4inputs-2adj-ones, 8inputs-2adj-ones, and 8inputs-3adj-ones. AND nodes are la-
beled A, OR nodes are labeled O, NOT nodes are labeled N, and nodes labeled
I are “input” nodes which copy their input unchanged to their output. A and O
nodes are assumed to take two inputs, and N and I nodes are assumed to take
one input. All arrows in the figure point downward. If a node has fewer inputs
shown than it is assumed to require, the remaining inputs are to be supplied
externally (i.e. from the input vector).

The middle box in the figure shows some of the sub-networks extracted by the
CloseGraph algorithm [18]. These sub-networks are used by the genetic algorithm
as primitives when learning to solve the next task: 12inputs-2adj-ones. The right
box shows the network learned for this task. Some of the sub-networks are seen
to appear in this new network, either whole or in part (where they have been
incorporated and then further mutated).

Though this is a very artificial set of tasks, the same kind of representation and
cumulative learning method could be used in a more realistic setting, such as mo-
tion planning with robots. The idea of primitives carries over easily to this domain,
and “behavior networks” (see fig. 2) have been used to represent motion plans [19].



Symbol Grounding Through Cumulative Learning 185

Fig. 2. An example behavior network. Reproduced from [19].

Figure 3 shows a typical comparison of learning curves with and without
transfer of knowledge from previously learnt similar tasks. Knowledge transfer
results in both faster learning and reduced variance in error (i.e. more robust
learning). If another agent, who already knows how to solve the given problem,
is able to tell the agent which primitives to use to solve the task, learning would
converge even faster.

A natural follow-up to the idea of cumulative learning, therefore, is that the
extracted cumulative knowledge might constitute the ontology or meaning space
of the agent. To use a somewhat provocative term, an agent understands a new
task in terms of its cumulative knowledge. The challenge, then, is to develop a
symbol system which maps onto the agents’ cumulative knowledge and enables
communication that helps in learning. We posit that this is a very natural and
realistic version of the symbol grounding problem for the following reasons:

– In this setup, meanings are internal to the agents and are not (indeed cannot
be) directly communicated. Direct meaning communication is a problem with
a lot of the previous work on symbol grounding, as various researchers have
begun to point out [20], and work around [21,22].

– Different agents may (and probably will) have somewhat different sets of
internal meanings, depending on the sets of problems they have encountered.
This is both a problem to be surmounted, and a realistic feature of our
setup. We address this further in the next section. Previous work on language
evolution has often assumed that all the agents have the same fixed set of
meanings. There have been a few notable exceptions, such as [20,23].

– Meanings may not necessarily correspond to objects in the environment.
The common example is, what is the meaning of the symbol “chair”? It
seems that “chair” corresponds to some prototypical chair which only exists
in our minds, and not necessarily in the environment. In the same way, the
extracted cumulative knowledge may not necessarily correspond to objects
in the environment, though if the same objects are encountered sufficiently
often, they might be represented in the cumulative knowledge.
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– Another advantage of our setup is that the agents could acquire symbols not
just for objects (i.e. nouns and adjectives), but also for actions (i.e. verbs),
or perhaps more abstract concepts.

– Last, but not least, in this setup the symbol-meaning mapping does not have
to be static. This is because the context imposes equivalences on items of
cumulative knowledge and allows a symbol that normally refers to one item
to be interpreted as referring to another item. We address this point in more
detail in the next section also.
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Fig. 3. A typical comparison of learning performance with and without transfer of
knowledge. Transfer of knowledge from similar tasks results in faster and more robust
learning.

4 Learning to Ground Symbols to Cumulative Knowledge

We now address the question: what might be a learning procedure that leads to
the development of a communication system based on cumulative knowledge?

The underlying goal is to create a language that is useful in learning new tasks.
Thus the development of the communication system should be guided by learning
performance. Suppose Alice knows how to solve a task, i.e. she knows which of
her internal primitives she can compose to create a solution to a particular task.
If she could communicate this information to Bob (and assuming he has the same
internal primitives), Bob could learn to solve that particular task essentially in
one step.
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There are at least two major hurdles to grounding symbols to cumulative
knowledge. The first is that cumulative knowledge is entirely internal to the
agent. There is nothing the agents can point to, nor can we use the cross-
situational learning strategy of [20,22]. The second problem is deeper: since
meanings depend on the tasks that have been encountered by the agent and
the solutions that the agent has discovered, there is a danger that the meanings
may be too different to allow successful communication. In other words, we need
some mechanism to keep the ontologies aligned.

To surmount these two problems, we suggest a parent-child (or teacher-student)
scenario. This is not an unrealistic assumption, and has been made before, e.g. in
the Iterated Learning Model [24]. The parent selects tasks for the child to per-
form. This gives the parent some measure of control over the ontology that the
child is likely to develop. Let us suppose, for simplicity, that the agents are learn-
ing Boolean functions. The parent selects a task for the child by creating a training
set of labeled examples, which the child must now learn to classify. The child ini-
tially has a small set of primitives. Let us assume that the child knows how to
compute the AND, OR, and NOT functions. The parent and child, however, do
not have a shared symbol system corresponding to these primitives. The parent
can easily establish a set of symbols for these functions by selecting extremely sim-
ple tasks for the child to perform. For example, if the first task is to perform the
AND operation on two inputs, the parent presents the child with the training set:
{{(0, 0), 0}, {(0, 1), 0}, {(1, 0), 0}, {(1, 1), 1}}, and the symbol AND. The sym-
bol is meant to indicate which primitive the child should use to solve the task.
The child does not know to which of its primitives the symbol AND corresponds,
but attempting to solve the task quickly tells it that there is only one primitive
which works. It is, of course, possible that the child happens to generate a more
complicated network that computes the AND function, so we might need to as-
sume an in-built bias towards smaller networks in the learning algorithm (similar
to Ockham’s razor).

In a similar way, the parent and child could develop symbols for the OR
and NOT functions also. This small shared lexicon provides a foothold for the
development of a more complex ontology and a corresponding symbol system. As
the parent selects more complex tasks for the child to perform, they will need to
develop a convention for communicating about combinations of primitives. This
could be something simple, such as generating a sentence by ordering primitives
by the number of times they are used in the task, e.g. “AND OR” would indicate
that the AND function is to be used more than the OR function in the new task.

As the child learns more complex tasks, its ontology will grow (by mining fre-
quent subgraphs). The parent will not know exactly what the subgraphs that the
child has discovered are, but by judicious selection of tasks, it should be possible
to guide the emergence of the child’s ontology, and to maintain a shared lexicon.

4.1 The Importance of Starting Small

Note that it is very important to start small. The parent and child could not develop
a shared lexicon if the initial tasks don’t serve to bootstrap the communication
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system. This is rather reminiscent of Elman’s work on learning and development
with neural networks [25]. He has talked about a rather interesting phenomenon
about the learning of natural language: that it is much easier to train neural net-
works to process natural language sentences if we use a developmental paradigm
where initially the networks are severely restricted with respect to their working
memory.This essentially focuses the attention of the network onprecisely those lin-
guistic structures which help it to subsequently learn the more complex structures
(see also [26]). Our symbol grounding procedure suggests that ontology alignment
might be a reason why natural languages exhibit this surprising property.

There is a deeper reason for starting small as well. The process of cumulative
learning itself benefits greatly from starting small. In other words, even if an
isolated agent were learning to solve multiple related problems, it would benefit
from starting with small problems. The reason is that for any given problem
there are multiple networks that will perform well on it. Not all of them are
good from the point of view of knowledge transfer however. One of the problems
in cumulative learning, then, is how to find the networks which have subgraphs
that can be reused for solving other problems? One solution is to start with
small problems, which have very few easy to find solutions. Once the agent
starts building up its cumulative knowledge, there is reinforcing effect. Using
the cumulative knowledge to find solutions to new problems ensures that more
cumulative knowledge will be found. This is a kind of cumulative advantage [27].

4.2 Dynamic Symbol Grounding

In real life, symbol grounding has a dynamic or contextual aspect to it. Heidegger
refers to this as the “as-ness” of language [28]. In other words, language enables
us to see the world (or the context) in a new way. Suppose Alice says to Bob,
“I need a hammer.” Bob, seeing no hammers around, hands her a rock. This
is clearly a successful case of communication, even though the word “hammer”
was grounded to a rock by Bob. In fact, Alice’s request enabled Bob to see
his surroundings in a different way (to see rocks as hammers). This is the “as-
ness” that Heidegger is talking about. Our setup also permits dynamic symbol
grounding. The task imposes equivalences on the items of cumulative knowledge.
This is easy to see with the Boolean function domain. An training set which does
not include all possible examples means that there are several Boolean functions
which would classify the examples correctly. Further, more complex scenarios
might contain situations where not every item in the cumulative knowledge of
the agent can be applied, e.g. in fig. 2, some of the preconditions might not
be satisfied. The parent might not know which of the child’s primitives are
inapplicable in a given context, since the primitives of the parent and child will
not be identical. Therefore it is easy to imagine situations where the parent
suggests using a primitive which the child cannot apply. In such a situation,
the child will be forced to interpret the symbol differently, and will apply a
perhaps contextually equivalent primitive. The interpretation process can be
put in probabilistic terms: the task imposes a prior distribution on which items
of cumulative knowledge can be applied, and the child computes a posterior
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distribution by combining this prior with the suggestion supplied by the parent
(which corresponds to a conditional).

5 Conclusion

We have presented our speculations on how a symbolic communication system
could be grounded in cumulative knowledge. The advantages of this particular
method of meaning construction are several:

– The agents are engaged in multiple tasks over a lifetime, and communication
helps in improving performance on these tasks.

– All the agents are not assumed to have the same fixed set of meanings.
– Meanings are internal to the agents, and there is no need for direct meaning

communication.
– Symbols and meanings arise in an interdependent manner.
– Symbols can be interpreted in context, i.e. symbol grounding is done dynam-

ically.

There are, however, some limitations to this account as well. One of the main
problems is that of ontological structure. Cumulative knowledge, as described
here, consists of a set of frequent subgraphs that are useful for multiple tasks. It
has no further structure. Ontologies are generally assumed to be hierarchically or-
ganized. In this sense, the use of cumulative knowledge as the meaning space of
the agent is somewhat unrealistic. On the other hand, it is not clear what could be
gained by attempting to give the cumulative knowledge some structural organiza-
tion. It could be done, however. E.g. if a particular item of cumulative knowledge
is a subgraph of another, that implies a PartOf relation between them.

Another potential challenge is that of preventing divergence in the meaning
space of the agents. The constructive approach we have suggested seems promis-
ing in that regard, but it would be sensitive to the “curriculum” chosen by the
parent. This bears further investigation. It might also help in answering the
question, when does language not evolve?

It might also be argued that not all meanings are cumulative knowledge. We
often have names for very specific things, such as “Eiffel tower”. This suggests
that our account of lexicon development should be combined with other accounts
in order to develop a more complete communication system.

Despite these limitations, we believe that there are important connections
between cumulative learning and language evolution, and our purpose here is
to identify some of these and bring them to the attention of our audience. We
believe this can be an area of much fruitful research.
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19. Nicolescu, M.N., Matarić, M.J.: Task Learning Through Imitation and Human-
Robot Interaction. In: Models and Mechanisms of Imitation and Social Learning
in Robots, Humans and Animals: Behavioural, Social and Communicative Dimen-
sions. (2005)

20. Smith, A.D.M.: Mutual Exclusivity: Communicative Success Despite Conceptual
Divergence. In: Language Origins: Perspectives on Evolution. Oxford University
Press (2005) 372–388

21. Smith, A.D.M.: Stable communication through dynamic language. In: Proceedings
of the 2nd International Symposium on the Emergence and Evolution of Linguistic
Communication. (2005) 135–142

22. Beule, J.D., Vylder, B.D., Belpaeme, T.: A cross-situational learning algorithm
for damping homonymy in the guessing game. In Rocha, L.M., Bedau, M., Flo-
reano, D., Goldstone, R., Vespignani, A., Yaeger, L., eds.: Proceedings of the Xth
Conference on Artificial Life, Cambridge, MA, USA, The MIT Press (2006)

23. Steels, L., Vogt, P.: Grounding adaptive language games in robotic agents. In
Husbands, C., Harvey, I., eds.: Proceedings of the Fourth European Conference on
Artificial Life, Cambridge and London, MIT Press (1997)



Symbol Grounding Through Cumulative Learning 191

24. Smith, K., Kirby, S., Brighton, H.: Iterated learning: A framework for the emer-
gence of language. Artificial Life 9(4) (2003) 371–386

25. Elman, J.L.: Learning and development in neural networks: The importance of
starting small. Cognition 48 (1993) 71–99

26. Clark, A., Thornton, C.: Trading spaces: Computation, representation and the
limits of uninformed learning. Behavioral and Brain Sciences 20(1) (1997) 57–67

27. de Solla Price, D.: A general theory of bibliometric and other cumulative advantage
processes. Journal of the American Society for Information Science 27 (1976)
292–306

28. Heidegger, M.: On the Way to Language. Harper, San Francisco (1982)



The Human Speechome Project

Deb Roy1, Rupal Patel2, Philip DeCamp1, Rony Kubat1, Michael Fleischman1,
Brandon Roy1, Nikolaos Mavridis1, Stefanie Tellex1, Alexia Salata1,

Jethran Guinness1, Michael Levit1, and Peter Gorniak1

1 Cognitive Machines Group, MIT Media Laboratory
2 Communication Analysis and Design Laboratory, Northeastern University

dkroy@media.mit.edu

Abstract. The Human Speechome Project is an effort to observe and
computationally model the longitudinal course of language development
for a single child at an unprecedented scale. We are collecting audio and
video recordings for the first three years of one child’s life, in its near
entirety, as it unfolds in the child’s home. A network of ceiling-mounted
video cameras and microphones are generating approximately 300 giga-
bytes of observational data each day from the home. One of the worlds
largest single-volume disk arrays is under construction to house approxi-
mately 400,000 hours of audio and video recordings that will accumulate
over the three year study. To analyze the massive data set, we are de-
veloping new data mining technologies to help human analysts rapidly
annotate and transcribe recordings using semi-automatic methods, and
to detect and visualize salient patterns of behavior and interaction. To
make sense of large-scale patterns that span across months or even years
of observations, we are developing computational models of language
acquisition that are able to learn from the childs experiential record.
By creating and evaluating machine learning systems that step into the
shoes of the child and sequentially process long stretches of perceptual
experience, we will investigate possible language learning strategies used
by children with an emphasis on early word learning.

1 The Need for Better Observational Data

To date, the primary means of studying language acquisition has been through
observational recordings made in laboratory settings or made at periodic inter-
vals in children’s homes. While laboratory studies provide many useful insights,
it has often been argued that the ideal way to observe early child development
is in the home where the routines and context of everyday life are minimally
disturbed.

Unfortunately, the quality and quantity of home observation data available is
surprisingly poor. Observations made in homes are sparse (typically 1-2 hours
per week), and often introduce strong observer effects due to the physical pres-
ence of researchers in the home. The fine-grained effects of experience on lan-
guage acquisition are poorly understood in large part due to this lack of dense
longitudinal data [1].
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In general, many hypotheses regarding the fine-grained interactions between
what a child observes and what the child learns to say cannot be investigated due
to a lack of data. How are a child’s first words related to the order and frequency
of words that the child heard? How does the specific context (who was present,
where was the language used, what was the child doing at the time, etc.) affect
acquisition dynamics? What specific sequence of grammatical constructions did
a child hear that led her to revise her internal model of verb inflection? These
questions are impossible to answer without far denser data recordings than those
currently available.

2 Pilot Study

The Human Speechome Project (HSP) attempts to address these shortcomings
by creating the most comprehensive record of a single child’s development to
date, coupled with novel data mining and modeling tools to make sense of the
resulting massive corpus. The recent surge in availability of digital sensing and
recording technologies enables ultra-dense observation: the capacity to record
virtually everything a child sees and hears in his/her home, 24 hours per day for
several years of continuous observation. We have designed an ultra-dense obser-
vational system based on a digital network of video cameras, microphones, and
data capture hardware. The system has been carefully designed to respect in-
fant and caregiver privacy and to avoid participant involvement in the recording
process in order to minimize observer effects.

The recording system has been deployed and at the time of this writing (June
2006), the data capture phase is ten months into operation. Two of the authors
(DR, RP) and their first-born child (male, now six months of age, raised with
English as the primary language) are the participants. Their home has been
instrumented with video cameras and microphones.

Our ultimate goal is to build computational models of language acquisition
that can “step into the shoes” of a child and learn directly from the child’s
experience. The design and implementation details of any computational model
will of course differ dramatically from the mental architecture and processes of
a child. Yet, the success of a model in learning from the same input as a child
provides evidence that the child may employ similar learning strategies.

3 Ultra-Dense Observation for Three Years

Eleven omni-directional mega-pixel resolution color digital video cameras have
been embedded in the ceilings of each room of the participants’ house (kitchen,
dining room, living room, playroom, entrance, exercise room, three bedrooms,
hallway, and bathroom). Video is recorded continuously from all cameras since
the child may be in any of the 11 locations at any given time. In post processing,
only the relevant video channel will be analyzed for modeling purposes. Video is
captured at 14 images per second whenever motion is detected, and one image
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per second in the absence of motion. The result is continuous and complete
full-motion video coverage of all activity throughout the house.

Boundary layer microphones (BLM) are used to record the home’s acoustic
environment. These microphones use the extended surface in which they are
embedded as sound pickup surfaces. BLMs produce high quality speech record-
ings in which background noise is greatly attenuated. We have embedded 14
microphones throughout the ceilings of the house placed for optimal coverage
of speech in all rooms. Audio is sampled from all 14 channels at greater than
CD-quality (16-bit, 48KHz). When there is no competing noise source, even
whispered speech is clearly captured.

Concealed wires deliver power and control signals to the cameras and micro-
phones, and transmit analog audio and networked digital video data to a cluster
of 10 computers and audio samplers located in the basement of the house. The
computers perform real-time video compression and generate time-stamped digi-
tal audio and video files on a local 5-terabyte disk array. With video compression,
approximately 300 gigabytes of raw data are accumulated each day. A petabyte
(i.e., 1 million gigabyte) disk array is under construction at MIT to house the
complete three-year data set and derivative metadata. Data is transferred peri-
odically from the house to MIT using tape storage.

Audio and video recordings can be controlled by the participants in the house
using miniature wall-mounted touch displays. Cameras are clustered into eight
visual zones (cameras that view overlapping physical spaces are grouped into
zones). Eight touch displays are installed next to light switches around the house,
each enabling on/off control over video recording in each zone by touching the
camera icon. Audio recording can also be turned on and off by touching the
microphone icon. To provide physical feedback on the status of video recording,
motorized shutters rotate to conceal cameras when they are not recording. The
“oops” button at the bottom of the display (marked with an exclamation mark)
opens a dialog box that allows the user to specify any number of minutes of
audio and/or video to retroactively and permanently delete from the disk array.

4 Data Management

The network of cameras and microphones are generating an immense flow of
data: an average of 300 gigabytes of data per day representing about 132 hours
of motion-compressed video per day (12 hours x 11 cameras) and 182 hours of
audio (13 hours x 14 microphones). In just the first six months we have collected
approximately 24,000 hours of video and 33,000 hours of audio. At this rate,
the data set is projected to grow to 142,000 hours of video and 196,000 hours of
audio by the end of the three year period. Clearly, new data mining tools must
be designed to aid in analysis of such an extensive corpus.

We are developing a multichannel data visualization and and annotation sys-
tem that will enable human analysts to quickly navigate, search, transcribe
salient regions of data. Our long term plan is to adapt and apply computer vision
techniques to the video corpus in order to detect, identify, and track people and
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salient objects. Since the visual environment is cluttered and undergoes constant
lighting changes (from direct sunlight to dimmed lamps), automatic methods are
inherently unreliable. Thus, similar to our approach with speech transcription,
we plan to design semi-automatic tools with which humans can efficiently per-
form error correction on automatically generated meta-data. The combination
of automatic motion tracking with human-generated identity labels will yield
complete spatiotemporal trajectories of each person over the entire three year
observation period. The relative locations, orientations, and movements of people
provide a basis for analyzing the social dynamics of caregiver-child interactions.

5 Modeling In Vivo Word Learning

In previous related work, we developed a model of early word learning called
CELL (Cross-Channel Early Lexical Learning) which learned to segment and
associate spoken words with acquired visual shape categories based on untran-
scribed speech and video input [2]. CELL was evaluated on speech recordings of
six mothers as they played with their pre-verbal infants using toys. This model
demonstrated that a single mechanism could be used to resolve three problems
of word learning: spoken unit discovery, visual category formation, and cross-
situational mappings from speech units to visual categories. The model oper-
ated under cognitively plausible constraints on working memory, and provided
a means for analyzing regularities in infant-directed observational recordings.

Three simplifications made in CELL may be contrasted with our new model-
ing effort using the HSP corpus. First, CELL was evaluated on a relatively small
set of observations. Caregiver-infant pairs were only observed for two one-hour
play sessions, held about a week apart. The data was thus a snapshot in time
and could not be used to study developmental trajectories. Second, observations
were conducted in an infant lab leading to behaviors that may not be represen-
tative of natural caregiver-infant interactions in the home. It is unclear whether
CELL’s learning strategy would work with a more realistic distribution of input.
Third, visual input was oversimplified and social context was ignored. The only
context available to CELL was video of single objects placed against controlled
backdrops. As a consequence, the model of conceptual grounding in CELL was
limited to visual categories of shapes and colors underlying words such as ball
and red. It could not learn verbs (since it did not model actions), nor could it
learn social terms such as hi and thank you.

The HSP corpus overcomes the limitations inherent in collecting small corpora
within laboratory settings as was done with CELL. To move beyond the simple
speech-to-image semantics of CELL, we will apply new semantic representations
including sensory-motor grounded “semiotic schemas” [3] and “perceived affor-
dances” [4,5]. In the latter, stochastic grammars are used to model the hierar-
chical and ambiguous nature of intentional actions. In [5], sequences of observed
movements are parsed by behavior grammars yielding lattices of inferred higher
level intentions. Verb and noun learning is modeled as acquiring cross-situational
mappings from constituents of utterances to constituents of intention lattices. We
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plan to use a similar approach with the HSP data, but with a semi-automatic
procedure for learning behavior grammars from video data. Words related to
routines (baths, meals, etc.) and names of locations (crib, highchair, etc.) might
be modeled on this basis.

6 Conclusions

The Human Speechome Project provides a natural, contextually rich, longitudi-
nal corpus that serves as a basis for studying language acquisition. An embedded
sensor network and data capture system have been designed, implemented, and
deployed to gather an ultra-dense corpus of a child’s audio-visual experiences
from birth to age three. We have described preliminary stages of data mining
and modeling tools that have been developed to make sense of 400,000 hours
of observations. These efforts make significant progress towards the ultimate
goal of modeling and evaluating computationally precise learning strategies that
children may use to acquire language.
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Abstract. Research into the evolution of grammar requires that we
employ formalisms and processing mechanisms that are powerful enough
to handle features found in human natural languages. But the formal-
ism needs to have some additional properties compared to those used
in other linguistics research that are specifically relevant for handling
the emergence and progressive co-ordination of grammars in a popula-
tion of agents. This document introduces Fluid Construction Grammar,
a formalism with associated parsing, production, and learning processes
designed for language evolution research. The present paper focuses on
a formal definition of the unification and merging algorithms used in
Fluid Construction Grammar. The complexity and soundness of the al-
gorithms and their relation to unification in logic programming and other
unification-based grammar formalisms are discussed.

1 Introduction

Computational research into the origins of language and meaning is flourishing.
There is a growing set of experiments showing how certain aspects of human
natural languages emerge in a population of agents endowed with specific cogni-
tive components such as a bi-directional associative memory or an articulatory
and auditory apparatus. (See overviews and representative samples of current
work in [3], [4], [18], [28]). Most of the solid results so far have been reached for
the emergence of lexicons and perceptually grounded categories. Although there
have been a number of experiments on the role of syntax and grammar (see e.g.
[12] [26], [1], [25]), there are as yet only very few demonstrations where non-
trivial grammars arise in grounded situated interactions between robotic agents.
Part of the reason is of course that the problem of grammar emergence is much
more encompassing than that of lexicons and many fundamental questions re-
main unanswered. In addition, the world models of agents and the nature of their
interactions needs to be much more complex than in lexical experiments. But
another reason, we believe, has to do with the nature of the computational ap-
paratus that is required to do serious systematic experiments. Whereas lexicon
emergence can be studied with relatively standard neural networks, grammar
requires much more powerful symbolic processing which falls outside the scope

P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 197–223, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



198 L. Steels and J. De Beule

of connectionist modeling today. Our group has therefore been working for many
years on a formalism that would be adequate for handling phenomena typically
found in natural language grammars, but that would at the same time support
highly flexible parsing and production (even of ungrammatical sentences or par-
tially unconventionalised meanings) and invention and learning operators that
could lead to the emergence, propagation, and further evolution of grammar, all
this in a multi-agent setting. Our formalism has been called Fluid Construction
Grammar, as it is in line with the approaches advocated in usage-based cognitive
approaches to language in general and construction grammar in particular, and
because it is designed to support highly flexible language processing in which
conventions are not static and fixed but fluid and emergent. At this point the
FCG system is ready for use by others. An implementation on a lisp substrate
has been released for free download through http://arti.vub.ac.be/FCG/. This
site also contains very specific examples on how to do experiments in language
evolution with FCG. The goal of the present paper is to define some core as-
pects of FCG more precisely, building further on earlier reports [8], [29]. The
application of FCG to various issues in the emergence of grammar is discussed
in some other papers (see [27], [7], [24]). Fluid Construction Grammar (FCG)
uses as much as possible existing widely accepted notions in theoretical and
computational linguistics, specifically feature structures for the representation
of syntactic and semantic information during parsing and production, and ab-
stract templates or rules for the representation of lexical and grammatical us-
age patterns, as in [19] or [2]. Contemporary linguistic theories propose general
operators for building up syntactic and semantic structures, such as Merge in
Chomsky’s Minimalist Grammar [5] or Unify in Jackendoff’s framework [14].
Unification based grammars [19,15,2] are similarly based on a unification opera-
tor, and more generally many generic inference systems, particularly within the
logic programming framework, use some form of unification [22]. There is also
some research on finding the neural coordinates of unify and merge in language
processing [13]. Unfortunately there are quite substantial differences between the
use of the terms unify and merge in all these different frameworks and one of
the goals of this paper is to clarify in detail the unify and merge operators that
form the core of FCG. For this, we build further on the comparative analysis
done by Sierra-Sàntibañez [21] who reformulated FCG in prolog. The remain-
der of the paper has five parts. The next section defines first the requirements
for grammar formalisms needed to do experiments in the emergence of non-
trivial grammars and the basic ideas behind the Fluid Construction Grammar
approach. Then there is a section with some preliminary definitions and back-
ground notions. The remainder of the paper focuses on a formal definition of the
unify and merge operations in FCG. Section 4 defines the unification in general,
and particularly the FCG extensions to standard unification, section 5 then ap-
plies this to FCG feature structures. Section 6 defines merging in general, and
section 7 applies it to FCG feature structures. Section 7 contains a worked out
example.
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2 Fluid Construction Grammars

It is obvious that there are many possible formalisms could be (and have been)
invented for capturing aspects of language, depending on the nature of the lin-
guistic theory and the types of processing one wants to study. For example,
generative (derivational) grammar is adequate for studying ways to generate the
set of all possible sentences of a language but it is not well suited for parsing
or production, while a constituent structure grammar is adequate for studying
syntactic structure but not helpful for investigating how case frames intervene
between the mapping from meaning to form, etc. Fluid Construction Grammar
takes a strong stance with respect to current linguistic theorising and attempts
in addition to satisfy specific requirements which arise when one wants to do
experiments in the emergence of grammar in grounded situated interactions.

2.1 Linguistic Assumptions

The linguistic perspective of FCG is in the general line of cognitive grammar
[17] and more specifically construction grammar [11]. This means the following:
1. FCG is usage-based: The inventories available to speakers and hearers consist
of templates which can be highly specialised, perhaps only pertaining to a sin-
gle case, or much more abstract, covering a wide range of usage events. There
is no sharp distinction therefore between idiomatic and general rules. New sen-
tences are constructed or parsed by assembling the templates using the unify and
merge operators defined later in this paper. 2. The grammar and lexicon consist
of symbolic units: A symbolic unit associates aspects of meaning with aspects of
form. The templates of FCG are all symbolic units in this sense. They feature a
semantic pole and a syntactic pole. Templates are always bi-directional, and so
are usable both for production and for parsing. This makes FCG unique not only
with respect to derivational formalisms (like generative grammar or HPSG) but
also with respect to other construction grammar formalisms which tend to be
uni-directional (such as Embodied Construction Grammar). 3. There is a con-
tinuum between grammar and the lexicon. Not only can templates be at different
levels of abstraction, but there is also no formal distinction in the structure or the
processing of lexical and grammatical entries. In the case of lexical entries, the
syntactic pole concerns mostly a lexical stem and the semantic pole tends to be
equal to some concrete predicate-argument structure. In the case of grammatical
constructions, the syntactic pole contains various syntactic categories constrain-
ing the sentence, and the semantic pole is based on semantic categories, but
otherwise there is no formal difference between the two types of templates. 4.
Schematisation occurs through variables and categorisation. A template has the
same form as an association between a semantic structure and a syntactic struc-
ture, in other words both poles of a template are feature structures. However,
templates are more abstract (or schematic) in three ways: Some parts of the
semantic or syntactic structure are left out, variables are used instead of units
and values, and syntactic or semantic categories are introduced to constrain the
possible values of the semantic and syntactic pole. These categories are often
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established by syntactic or semantic categorisation rules. In some experiments
the categories have been defined using a memory-based approach with typical
examples and prototypes but this is not yet embedded in the current software
release of FCG1. 5. Syntagmatic and Paradigmatic Compositionality: To produce
or parse a sentence, templates can be combined (several templates all matching
with different parts of the meaning in production or with parts of the sentence in
parsing are simply applied together) or integrated (using hierarchical templates
that combine partial structures into larger wholes, possibly after a modification
of the syntactic or semantic aspects of the component units). Apart from this
syntagmatic composition, there is also the possibility that several templates are
overlayed and each contribute additional constraints to the final sentence. This
is paradigmatic compositionality. Both forms of compositionality are completely
supported with the unify and merge operators defined later in the paper. Of
particular importance is that the FCG unify and merge operators handle linking
(resolving equalities introduced by separate lexical items) by unifying variables
in merge. This topic is discussed more extensively in [29].

2.2 Additional Requirements

In addition to these characteristics, which we take to be general features of
cognitive grammars and construction grammars, there are some additional re-
quirements for a formalism if it is to be adequate for modeling emergent natural
language-like grammars. 1. All inventory entries have scores: We assume that
speakers and hearers create new templates which are often competing with each
other. Not all templates are widely accepted (entrenched) in the population and
there is a negotiation process. To enable this capability we associate with every
item in the lexico-grammar a score that reflects the degree of entrenchment of
that item. It is based on feedback from success or failure in the language games
in which the item has been used. We know from our other experiments in lexicon
emergence that an appropriate lateral inhibition dynamics is the most adequate
way for driving a population to a sufficiently co-ordinated repertoire to have
success in communication and the same dynamics is part of FCG. 2. The set
of syntactic and semantic categories is open. Often linguistic formalisms posit
specific sets of semantic categories (for example semantic roles like agent, pa-
tient, etc.) or syntactic categories (such as parts of speech, syntactic features,
and others). Because we are interested in how all these categories arise, we make
the formalism completely open in this respect. Constraints on feature values
are expressed as propositions or predicate- argument clauses so that the set of
categories can be expanded at any time. In our experiments there are typically
hundreds or even thousands of new categories built. This openness of categories
is in line with the Radical Construction Grammar approach which argues that
linguistic categories are not universal and subject to evolution [6]. 3. The multi-
agent perspective: In traditional Chomskyan linguistics only the grammar or
lexicon of an ‘idealised speaker or hearer’ is considered. In contrast, when we
1 version 0.9; for information about FCG software releases see

http://arti.vub.ac.be/FCG.
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want to study how grammar arises in a population we need to take a multi-agent
perspective, where every agent possibly has a different inventory. We need to un-
derstand in particular how agents co-ordinate their inventories to be successful
in communication. This raises a large number of computational issues (for ex-
ample linguistic knowledge is always local to an agent) as well as issues in how
to track and measure ‘the grammar’ in the population. Although all these issues
are dealt with in the current FCG design and implementation, the remainder of
this paper focuses only on the core of the system, namely the unify and merge
operators.

3 Preliminaries

This section starts the more formal discussion and assumes some familiarity with
fcg (e.g. from [27], [29], [8] or the FCG website http://arti.vub.ac.be/FCG).
We will adopt the standard terminology of logic, which is unfortunately different
from the terminology often used in other unification-based approaches to natural
language. In logic, the term ‘unification’ does not involve the merging of two
structures or a change to a structure, so unification is a kind of ‘matching’
in which it is tested whether a source structure matches a target or pattern
structure, but no new resulting structure is constructed.

Example 1. Consider the following syntactic fcg unit (fcg units will be defined
formally later on):

(John-unit (form ((string John-unit "John"))))

And the following template unit which could be part of the right-pole of a mor-
phological fcg template:

(?john-unit (form ((string ?john-unit "John"))))

Symbols starting with a question mark, like ?john-unit, are variables. The
unification of the template unit with the syntactic unit results in the binding
[?john-unit/John-unit]. In contrast, the template unit would not unify with
unit below because they do not ‘match’ (the string value “walks” differs from
“John”):

(walks-unit (form ((string walks-unit "walks"))))

In contrast with simpler forms of matching (as used in many production rule
systems), variables can be present both in the source and in the target. This is
the meaning of ‘unify’ as used in the rest of the paper. Because we also want a
way to extend or build up structure based on templates, we have an additional
operator called ‘merge’ which takes a source structure and a target structure
and combines them into a new structure.

Example 2. Consider again the John-unit from the previous example:

(John-unit (form ((string John-unit "John"))))
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and now also the template unit shown below, which could be the left-pole of the
morphological template from the previous example:

(?john-unit (syn-cat ((lex-cat Proper-Noun))))

Given the binding [?john-unit/John-unit], this template unit merges with the
John-unit resulting in the following new unit:

(John-unit (form ((string John-unit "John")))
(syn-cat ((lex-cat Proper-Noun))))

We now introduce some definitions which are common in logic (see e.g. [22,10])
and which will allow us to formally define the notion of structures, templates, uni-
fication and merging. The atomic elements of our formalism are called Symbols.
For example the template-unit in example 1 contains the symbols ?john-unit,
form, string and "John". Symbols starting with a question mark are vari-
ables, like ?john-unit. A denotes the set of all symbols, V ⊂ A the set of all
variables. Symbols that are not variables are constants. A simple expression
is defined as a symbol or a list of one or more simple expressions. More complex
expressions can be created with operators which take zero or more argument ex-
pressions to produce a new expression. More formally, let (.|.) be the list-creator
operator (similar to cons in lisp [30]) and let () be an operator of arity 0 (similar
to nil in lisp).

Definition 1. Let Es denote the set of simple expressions:

– All elements of A as well as () are elements of Es.
– If e1 ∈ Es and e2 ∈ Es and if e2 is not in A then (e1|e2) ∈ Es.

Hence, all symbols and the syntactic and template units in examples 1 and 2
are simple expressions. In addition to simple expressions, we will consider later
non-simple expressions which feature special operators and will be called general
fcg-expressions or simply expressions. Let us denote the set of variables in an
expression e by vars(e). Often an expression of the form (e1|(e2|...(ek|())...))
is represented as (e1e2...ek) and is called a list of length k. The operator ()
is called a list of length 0. A binding [?x/X ] specifies the value X (a simple
expression) of a variable ?x. If X is itself a variable then such a binding is called
an equality. A set of bindings B = {[?x1/X1], ..., [?xn/Xn]} defines a function
σB : E∫ → Es such that σB(e) = e except for the set of variables ?x1 to ?xn in B.
This set is called the domain of σB and denoted dom(σB). For ?xi ∈ dom(σB)
it holds that σB(?xi) = Xi, 1 ≤ i ≤ n. The set {X1, ..., Xn} is called the range
of σB and denoted ran(σB). Such a function σB is called a substitution and
the set of bindings B is sometimes called the graph of σB and is written simply
as [?x1/X1, ..., ?xn/Xn]. Often a substitution σB is represented by its graph B.
The empty substitution (the identity function) is denoted by ε. Furthermore
define fail to be a special symbol which will be used to specify the failure to find
a substitution. The extension of a substitution to the domain Es can be defined
using structural induction. If σB is the substitution constructed from the set of
bindings B then the application of σB to an expression e is written either as
σB(e) or as [e]B.
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Example 3. The binding B =[?john-unit/John-unit] from example 1 defines
a substitution σB that leaves all expressions unchanged except for the variable
?john-unit, which is mapped onto the constant John-unit. Hence:

σB(?john-unit)=John-unit
and

σB(((?john-unit (form ((string ?john-unit "John"))))))
= σB(((John-unit (form ((string John-unit "John"))))))
= ((John-unit (form ((string John-unit "John")))))

The domain of σB is {?john-unit} and its range is {John-unit}.

Definition 2. Two simple expressions x and y are said to be equal (written as
x = y) if and only if either:

1. x and y are both the same atom
2. both x = (x1...xn) and y = (y1...ym) are lists of the same length (m = n)

and for every i = 1..n : xi = yi.

Substitutions can be ordered according to the pre-order �V which is defined as
follows: If σ1 and σ2 are two substitutions then σ1 �V σ2 if and only if there
exists a substitution λ such that σ1(v) = (σ2 ◦ λ)(v) = σ2(λ(v)) for each v ∈ V .
When clear from the context, σ1 �V σ2 is written as σ1 � σ2. If σ1 �V σ2 and
σ2 �V σ1 then we say that σ1 =V σ2.

Definition 3. Two simple expressions e1 and e2 are said to unify if and only if
there exists a substitution σ such that σ(e1) = σ(e2). In this case the substitution
σ is called a unifier of the two expressions and the set of all unifiers of e1 and
e2 is written as U(e1, e2).

Example 4. From example 3 it can be seen that the expressions
((?john-unit (form ((string ?john-unit "John")))))

and
((John-unit (form ((string John-unit "John")))))

indeed unify with unifier σB; B =[?john-unit/John-unit].

It is easy to see that the set of unifiers of two unifiable expressions e1 and e2 is
infinite (if V is infinite.) Indeed, a unifier can always be extended with an addi-
tional binding for a variable that is not an element of either vars(e1) or vars(e2).
In order to exclude these unifiers we only assume unifiers that satisfy the protec-
tiveness condition. A unifier σ of two expressions e1 and e2 satisfies this condi-
tion if and only if dom(σ) ⊆ vars(e1)∪vars(e2) and dom(σ)∩vars(ran(σ)) = ∅
Example 5. Both

B =[?john-unit/John-unit]
and

B′ =[?john-unit/John-unit,?walks-unit/Walks-unit]
define unifiers of

e1 =((?john-unit (form ((string ?john-unit "John")))))
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and
e2 =((John-unit (form ((string John-unit "John"))))).

However, only B satisfies the protectiveness condition. Indeed:
dom(σB′ ) = {?john-unit, ?walks-unit}

�⊆ vars(e1) ∪ vars(e2) = {?john-unit}
A complete set of unifiers c(e1, e2) is a subset of U(e1, e2) that satisfies the
additional condition that for any unifier σ of e1 and e2 there exists a θ ∈ c(e1, e2)
such that θ � σ. The set of most general unifiers µ(e1, e2) is a complete set
of unifiers that additionally satisfies the minimality condition: for any pair
µ1, µ2 ∈ µ(e1, e2), if µ1 � µ2 then µ1 = µ2. It is well known that if two simple
expressions x and y unify, then there always is only one most general unifier (see
e.g. [22]). In example 5 the bindings B define the unique most general unifier of
e1 and e2. Let fµ(x, y, ε) be a function that computes the most general unifier
of two simple expressions x and y if one exists and returns fail otherwise:

fµ(x, y, ε) =
{

µ(x, y) if x and y unify
fail otherwise

We will now define fµ(x, y, B), with B a non-empty substitution, which will allow
us to show how fµ(x, y, ε) can be computed. For this we need the notion of valid
extension. Let B be a set of bindings and let X ∈ Es be a simple expression. If it
exists, then the valid extension Ξ(B, [?x/X ]) of B with [?x/X ] is a substitution
that has ?x in its domain: ?x ∈ dom(σΞ(B,[?x/X])). For example, if X ∈ C and
?x /∈ dom(σB), that is if X is a constant and ?x is not yet bound in B, then B
is simply extended to include the binding [?x/X ]:

X ∈ C and ?x /∈ dom(σB) : Ξ(B, [?x/X ]) ≡ B ∪ [?x/X ]

However, if B already specifies a value for ?x then this might conflict with the
new value X for ?x as specified by [?x/X ]. The following two definitions takes
care of this (and of other possible conflicts). Note that both definitions depend
on each other, but in such a way that both functions are always computable.
Definition 4. The valid extension Ξ(B, b) of a set of bindings
B = [?x1/X1, ..., ?xn/Xn] with a binding b = [?x/X ] (with X, Xi ∈ Es) is defined
as follows:

Ξ(B, b) =

⎧⎪⎪⎨
⎪⎪⎩

fµ(X, Xi, B) if ?x =?xi for some i ∈ {1, ..., n}
fµ(?x, Xj , B) if X =?xj for some j ∈ {1, ..., n}
fail if ?x occurs anywhere in X or in σB(X)
B ∪ [?x/X ] otherwise.

Definition 5. Let x, y ∈ Es and B be a set of bindings or fail. Then

fµ(x, y, B) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fail if B = fail
B if x = y
Ξ(x, y, B) if x ∈ V
Ξ(y, x, B) if y ∈ V
fµ(xr, yr, fµ(x1, y1, B)) if x = (x1|xr) and y = (y1|yr)
fail otherwise
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With these definition the standard unification function fµ(x, y, ε) on simple ex-
pression x and y is also defined. As will be shown in the next section, fcg
unification ffcg(x, y, {ε}) = fµ(x, y, ε) if both x and y are simple expressions.

4 Unifying

General fcg expressions are more extensive than simple expressions because they
may include special operators such as the includes-operator ‘==’ which specifies
which elements should be included in a feature’s value, or the J-operator which
plays a key role in defining hierarchy.2 Each of these operators has a dedicated
function for defining how unification should be carried out.

Example 6. Consider the following source syntactic unit

(walks-unit (form ((stem walks-unit "walk")
(affix walks-unit "-s"))))

Now assume we want to build a template unit that is capable of ‘recognizing’ all
present tense forms of the verb “to walk”, independent of person (i.e. indendent
of the affix “-s”). As a first attempt we could write:

(?walk-unit (form ((stem ?walk-unit "walk"))))

Unfortunately, this template unit does not unify with (or ‘recognize’) the source
unit because it does not contain the affix part. The fcg solution to this is to
use the includes special operator, written as ==, in the template unit as follows:

(?walk-unit (form (== (stem ?walk-unit "walk"))))

An includes list (like the (== (stem ?walk-unit "walk") part above) unifies
with all lists that at least contain the specified elements, but more elements may
be present in the source. As a result the above modified template unit does unify
with (or ‘recognizes’) the source unit as was desired.

We will now formalize this. Let O be the set of special operator symbols. It
includes for example the symbol ‘==’.

Definition 6. Let E denote the set of all fcg expressions. Then:

1. All elements of A and O as well as () are elements of E.
2. if e1 ∈ E and e2 ∈ E and if e2 is not in A ∪O then (e1|e2) ∈ E.

In words, the set of all fcg expressions consists of all (nested) lists of which the
leaf elements may be symbols but also special operators. The modified template
unit in example 6 is thus an fcg expression. It is however not a simple expression
because it contains the includes special operator. In the following we will refer to
an fcg expression simply as an expression. To extend the notion of unification
to the set of all expressions we must specify how special operators are handled.
2 The J-operator is treated in a separate paper [8].
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Therefore, for every operator o in O and for all expressions e1 = (o|e′1) and e2

and sets of bindings B a designated unification function fo(e1, e2,B) must be
defined returning a set of unifiers for e1 and e2. Fcg unification can then be
defined as follows:

Definition 7. fcg unification ffcg(x, y,B) of two expressions x and y, with
B a set of sets of bindings or fail is defined as follows:

1. ffcg(x, y, fail) = fail
2. if x = (o|x′) with o ∈ O then ffcg(x, y,B) = fo(x, y,B)
3. else if y = (o|y′) with o ∈ O then ffcg(x, y,B) = fo(y, x,B)
4. else if x = (x1|xr) and y = (y1|yr) then

ffcg(x, y,B) = ffcg(xr, yr, ffcg(x1, y1,B))
5. else ffcg(x, y,B) = {B′|B′ = fµ(x, y, B); B′ �= fail; B ∈ B}

It is easy to see that if x and y are simple expressions (i.e. do not contain special
operators) then ffcg(x, y, {ε}) = {fµ(x, y, ε)}. In this sense fcg-unification is
equivalent to standard unification in the space of simple expressions. For general
fcg-expressions the properties of ffcg will depend on the properties of the
dedicated unification functions fo. We now define some of these special operators
so that fcg unification of fcg feature structures can be defined. The list of
special operators can in principle be extended by defining the relevant unification
functions.

4.1 The Includes Operator ==

Let us first define the notion of containment.

Definition 8. An expression xi is contained in a list if and only if it fcg-
unifies with an element in this list.

A list starting with the includes operator (== x1...xn) unifies with any
source list that at least contains the elements x1 to xn. The order in which the
elements occur in the source list is irrelevant, however every xi should unify with
a different element in the source as in the following examples:

Example 7

f==((== a a b), (a b), {ε}) = fail
f==((== a a b), (a a b), {ε}) = {ε}
f==((== a a b), (b a a), {ε}) = {ε}
f==((== a ?x), (a b c), {ε}) = {[?x/b], [?x/c]} (1)

This is formalized as follows:

Definition 9. Let pn((e1...em)) with n ≤ m be the set of expressions (ei1 ...ein)
for every variation (i1, ..., in) of n elements out of (1, ..., m).3 Then

f==((== x1...xn), (a1...am),B)
≡ {B|B = ffcg((x1...xn), a,B); B �= fail; a ∈ pn((a1...am))}

3 We intend here the set-theoretic notion of variation, i.e. all subsets of n elements
from (1, ..., m) where the order of the elements matters.
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Example 8. Consider again the last example in (1). We have to consider all
variations of two elements out of (a b c), i.e. (a b), (b a), (a c), (c a), (b c) and
(c b). Unifying these with (a ?x) results in {[?x/b]}, fail, {[?x/c]}, fail, fail and
fail respectively. Keeping only the successful ones indeed leads to {[?x/b], [?x/c]}.

4.2 Special Cases of f==

First of all, the unification of two include-lists x = (== x1...xn) and y = (==
y1...ym) is not well defined. One possibility is to state that two such lists always
unify. However, it is not clear what the resulting set of bindings should be. For
simplicity we define ffcg((o1|x), (o2|y),B) with o1, o2 ∈ O to always be equal
to fail. Second, the unification of a pattern (x1...xk == y1...yl) with a source
(z1...zm), m ≥ k+l, is well defined. More formally, the pattern should be written
as

(x1...xk == y1...yl) ≡ (x1|(...|(xk|(== |(y1|(...|(yl|())...).
The ffcg function will progressively unify the elements x1 to xk with the first k
elements in the source. At this point ffcg is recursively applied to the pattern
(== |(y1|(...|(yl|())...), which can be re-written as (== y1...yl), and the source
(zk+1...zm). Third, operators are treated as ordinary symbols if they are not the
first element of a list:

f==((== a ?x), (a == b), {ε}) = {[?x/ ==], [?x/b]}

4.3 Minimality, Completeness and Complexity of f==

Theorem 1 (Completeness of f==). The function f==((== |X), Y, {ε})
computes a complete set c((== |X), Y ) of unifiers.

Proof. From the definition of f== it follows that, if a substitution τ is a unifier
of (== |X) = (== x1...xn) and Y = (y1...ym), then it must be that τ(X) is
a variation of n elements from Y . Let σ ∈ f==((== |X), Y, {ε}) be the substi-
tution that computes this variation, so that σ(X) = τ(X). If X and Y do not
contain any special operators then, from the completeness of Ffcg for simple
expressions, it follows that σ � τ and thus that f==(X, Y, {ε}) computes a com-
plete set of unifiers. If some element xi (yi) of X (Y ) is of the form (== |z),
with z not containing a special operator, then the same argument can be used
recursively. Continuing in this way, it follows that f== computes a complete set
of unifiers. ��
Theorem 2 (Non-minimality of f==). The function f==((== |X), Y, {ε})
does not necessarily compute the most general set of unifiers µ((== |X), Y ).

Proof. It suffices to show that f== does not satisfy the minimality condition.
Consider the unification of (== ?x ?y) with (?x ?y) which results in {ε, [?x/?y]}.
This is different from the minimal set of unifiers which consists of the empty
substitution ε only (this example was taken from [21].) ��
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Theorem 3 (Complexity of f==). f==((== x1...xn), (y1...ym≥n)) is of ex-
ponential complexity in n.

Proof. Basically, the exponential complexity arises from the need to calculate the
variations. Indeed, when xi �= yj for all possible combinations of i and j then
f==((== x1...xn), (y1...ym)) is equivalent with the subset unification of {xi}
and {yj}. General subset unification is exponential and the subset-unifiability
problem is NP-complete [16,9]. ��
The implementation of f==((== x1...xn), (y1...ym≥n) can be made more effi-
cient by calculating in advance the set of candidate expressions Ci = {yj|yj

unifies with xi} and by only considering combinations of n distinct elements out
of each Ci. However the inherent exponential complexity cannot be improved
upon in general. In the following we introduce two additional special operators
which are defined as special cases of the includes operator. This ensures that
the completeness of ffcg is maintained. However they can be computed more
efficiently. The need for introducing these operators will become more clear in
sections 5 and 7.

4.4 The Permutation Operator ==p

The permutation operator is like the includes operator except that the source
should contain exactly the elements specified in the pattern. Thus we have:

Definition 10

f==p((==p x1...xn), (a1...am),B)

≡
{

f==((== x1...xn), (a1...am),B) if n = m,
fail otherwise. (2)

4.5 The Includes-Uniquely Operator ==1

The function of this operator will become more important in merging (see later.)
However its behavior in unification must be specified because fcg-templates may
contain this operator.

Definition 11. Let s = (y1...ym). Then f==1((==1 x1...xn), s) is the set {B} ⊂
f==((== x1...xn), s) of substitutions B that satisfy the following conditions

1. No two symbols σB(yi) and σB(yj) of σB((y1...yn)) with i �= j are allowed
to unify: ffcg(yi, yj, {B}) = fail and

2. if σB(yi) = σB((yi1|yi2)) and σB(yj) = σB((yj1|yj2)) are two non-atomic
elements of σB((y1...yn)) with i �= j then their first elements are not allowed
to unify: ffcg(yi1, yj1, {B}) = fail

The above definition ensures that every element in σB((y1...yn)), B ∈ B is dis-
tinct. It also implies that no element σB(yi) can be a variable or start with a
variable if n ≥ 1.
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Example 9

f==1((==1 ?x1 a), (?y1 (?y2) b)) = {[?y1/a, ?x1/(?y2)], [?y1/a, ?x1/b]}
f==1((==1 ?x1 a), (?y1 ?y2 b)) = fail
f==1((==1 ?x1), (?y1 b)) = fail. (3)

In contrast with the last of these examples, consider that:

Example 10

f==((== ?x1), (?y1 b)) = {[?x1/b], [?x1/?y1]}. (4)

Note that some includes-uniquely patterns cannot be satisfied (e.g. (==1 a a).)

5 Unifying Feature Structures

We are now ready to define the matching of two fcg structures. We begin by
defining fcg feature structures which are more constrained than general fcg
expressions. They are also more constrained than feature structures in other
unification grammars [19], in the sense that they are not hierarchical. Hierarchy
is represented instead by using the name of a unit as the definition of the syn-
subunits or sem-subunits slots. This has many advantages, including that a unit
can be the subunit of more than one other unit. It also simplifies computation
enormously.

5.1 Feature Structures in fcg

A syntactic or semantic structure in fcg consists of a set of units which each
consist of a unique name and a set of feature-value pairs. A unit typically corre-
sponds to a lexical item or to constituents like noun phrases or relative clauses.
The name can be used to identify or refer to a unit and unit-names can be
bound to variables. Feature-values cannot themselves be feature structures. In-
stead, we always introduce separate units with their own names and associate
feature-value pairs with this new unit.

Example 11. The following expression could be a syntactic structure in fcg.
The structure contains three units named sentence-unit, subject-unit and
predicate-unit. The sentence-unit has two features named syn-subunits
and syn-cat, with respective values the lists (subject-unit predicate-unit)
and (SV-sentence).

((sentence-unit (syn-subunits (subject-unit predicate-unit))
(syn-cat (SV-sentence)))

(subject-unit (syn-cat (proper-noun (number singular)))
(form John))

(predicate-unit (syn-cat (verb (number singular)))
(form walks))).



210 L. Steels and J. De Beule

Without separate units or unit names (as in other formalisms) this would look
like:

(sentence-unit
(syn-subunits

((syn-cat (proper-noun)
(number singular))

(form John))
((syn-cat (verb)

(number singular))
(form walks)))).

A template’s pole has the same form as a feature structures but typically contains
variables as well as special operators (like ‘==’).

Example 12. The following expression could be the syntactic pole of a template.
Note how agreement in number between subject and verb is handled through
the variable ?number which will be bound to a specific number value.

((?sentence-unit
(syn-cat (SV-sentence))
(syn-subunits (?subject-unit ?predicate-unit))
(form (== (precedes ?subject-unit ?predicate-unit))))

(?subject-unit
(syn-cat (== proper-noun (number ?number))))

(?predicate-unit
(syn-cat (== verb (number ?number))))).

The features that may occur are restricted to a limited set of symbols: {sem-
subunits, referent, meaning, sem-cat} for semantic structures and {syn-subunits,
utterance, form, syn-cat} for syntactic structures. The syntactic or semantic
categories are completely open-ended, and so the example categories used here
(like number, proper-noun, etc.) are just intended as illustration. Syntactic and
semantic structures always come in pairs, and units in a syntactic structure are
paired with those in the semantic structure through common unit names. More
formally, we have the following:

Definition 12. A feature-value pair is an expression of the form (en ev).
The expression en is called the feature name and ev is the feature value. A unit
is any expression of the form (en f1...fk) with the expression en the unit’s name
and fi, i = 1...k its features. Unit names are usually but not necessarily symbols.
Finally a unit structure (or feature structure) is any expression of the form
(u1...ul) with all of the ui units.

Thus, a unit structure can be represented by an expression of the form

((u1 (f11 v11)...(f1n1 v1n1))
...

(um (fm1 vm1)...(fmnm vmnm))). (5)
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Here is another (simplistic) example of a syntactic structure for the utterance
“red ball”:

((np-unit (syn-subunits (adjective-unit noun-unit)))
(adjective-unit (syn-cat (adjective))

(form ((stem adjective-unit "red"))))
(noun-unit (syn-cat (noun))

(form ((stem noun-unit "ball"))))),

which may be associated with the following semantic structure:

((np-unit (sem-subunits (adjective-unit noun-unit)))
(adjective-unit (meaning ((color obj-1 red))))
(noun-unit (referent obj-1)

(meaning ((sphere obj-1)(used-for obj-1 play)
(mentioned-in-discourse obj-1))))).

The names of the units allow cross-referencing between the two structures. Uni-
fication in fcg determines the applicability of templates. An example of an fcg
template that should be triggered by the above semantic structure is shown be-
low (the template’s left (semantic) and right (syntactic) poles are separated by
a double-arrow):4

((?unit (referent ?obj)
(meaning (== (sphere ?obj) (used-for ?obj play)))))

<-->
((?unit (form (== (stem ?unit "ball")))))

However, it can be seen that the left pole of this template does not unify with
the semantic structure above: only (part of) the noun-unit is specified by the
pole but specifications for the other units are missing. Therefore no substitution
can make the source structure equal to the pole or vice versa. If however the
pole is changed to:

(==1 (?unit (referent ?obj)
(meaning (== (sphere ?obj)(used-for ?obj play))))),

then this indeed unifies with the source structure to yield the bindings

[?obj/obj-1,?unit/noun-unit].

5.2 The Unification of Feature Structures

Definition 13. The function unify-structures(P,S,B) takes a pattern struc-
ture P , a source structure S and a set of bindings B and can be computed as
follows. If P is as represented in (5) then the pattern is first transformed to the
pattern P ′:

4 These examples have all been simplified for didactic reasons.
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(==1(u1 ==1 (f11 v′11)...(f1n1 v′1n1
))

...

(um ==1 (fm1 v′m1)...(fmnm v′mnm
))), (6)

in which the new feature values v′ij are determined as follows: Every non-atomic
feature value vij = (v1|v2) in the pattern for which v1 is not a special operator is
replaced by v′ij = (==p |vij). Atomic feature values remain unchanged: v′ij = vij

if vij is atomic. Unify-structures(P,S,B) is then defined as ffcg(P ′, S, {B}).

6 Merging

Informally, merging a source expression s and a pattern expression p means
changing the source expression such that it unifies with the pattern expression.
Merging two general fcg-expressions is undefined in this paper, we only consider
the case where at least the source is a simple expression (i.e. does not contain
special operators.) We first examine the case where also the pattern is a simple
expression.

6.1 Merging of Simple Expressions

Definition 14. Let g(p, s, B) denote the merge function that computes a set of
tuples (s′,B′) of new source patterns s′ and bindings sets B′ such that ffcg(p, s′,
{B}) = B′. g(p, s, B) on simple expressions p and s is defined as follows:

1. If B = ffcg(p, s, {B}) �= fail then g(p, s, B) = (s,B).
2. Else if p = (p1|p2) and s = (s1|s2) then let G′

1 = g(p1, s1, B).
(a) If G′

1 �= ∅ then

g(p, s, B) =
⋃

(s′
1,B1)∈G′

1

⎛
⎝ ⋃

g′
2∈g(p2,s2,B1)

⎛
⎝ ⋃

(s′
2,B′)∈g′

2

{((s′1|s′2),B′)}
⎞
⎠
⎞
⎠

(b) Else, if length(p) > length(s) then let G′
2 = g(p2, s, B) and let

S′
1 =

⋃
(s′

2,B′)∈G′
2

( ⋃
B′∈B′

{σB′(p1)}
)

.

Then

g(p, s, B) =
⋃

s′
1∈S′

1

⎛
⎝ ⋃

(s′
2,B′)∈G′

2

{((s′1|s′2),B′)}
⎞
⎠

3. Else if p = (p1|p2) and s = () then g(p, s, B) = {(σB(p), {B})}
4. Else g(p, s, B) = ∅
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Let us clarify these steps. The first step is obvious and ensures that no unnec-
essary modifications are done: the merging of a pattern and a source that unify
is equivalent to leaving the source unchanged and unifying them. The second
step consists of two possibilities. If the first element of the pattern merges with
the first element of the source (case (a)) then the result is further completely
determined by the results g′2 = (s′2,B′) of merging the remaining elements of the
source and the pattern. Otherwise (case (b), the first elements do not merge),
if the pattern is longer then the source we can consider extending the source
with the first element of the pattern. The result is then further completely de-
termined by the result G′

2 of merging the remaining elements of the pattern
with the entire source. And because this might involve a set of bindings which
could potentially lead to different expressions for the first element of the pat-
tern p1, the combinations of such distinct expressions and bindings need to be
computed.

Theorem 4 (Termination of g(p, s, B)). The definition above can be viewed
as an algorithm to compute the value of g(p, s, B). It is obvious that this algo-
rithm will always terminate when called on a pattern of finite length: although
it is called recursively in steps 2(a) and (b), it is always called on a pattern of
smaller length. This can only continue until the pattern is of length 0 (i.e. is
equal to ()) in which case the algorithm always returns from steps 1 or 4. ��
Example 13. Let a and b be constants. Then:

g(a, a, {ε}) = {(a, {ε})}
g((a b), (a), {ε}) = {((a b), {ε})}
g((a b), (b), {ε}) = {((a b), {ε})}
g((a ?y), (a), {ε}) = {((a?y), {ε})}
g((?x b), (a), {ε}) = {((a b), {[?x/a]})}
g((?x ?y), (a), {ε}) = {((a ?y), {[?x/a]})}. (7)

Example 14. The merging of

(?unit (form ?form)
(syn-cat ((lex-cat Verb))))

and

(Unit (form ((stem Unit "walk"))))

gives the expanded unit

(Unit (form ((stem Unit "walk")))
(syn-cat ((lex-cat Verb))))

and bindings

[?unit/Unit, ?form/((stem ?unit "walk"))].
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6.2 Merging a General Pattern

We now turn to the case where the pattern p can be any fcg-expression. As with
unification, the merge function g is extended with specialized merge functions
whenever the pattern is of the form p = (o...) with o ∈ O.

The includes operator. Let us first look at the case where p = (== e1...en).
The main differences with the simple case is that now neither the order nor the
number of elements in the source matters:

Example 15

g==((== b a), (a b), {ε}) = {((a b), {ε})}
g==((== b a), (a), {ε}) = {((a b), {ε})} (8)

Example 16. (Compare with example 14.) The merging of

(?unit == (syn-cat ((lex-cat Verb))))

and

(Unit (form ((stem Unit "walk"))))

gives the expanded unit

(Unit (form ((stem Unit "walk")))
(syn-cat ((lex-cat Verb))))

and bindings

[?unit/Unit].

The algorithm presented above can be used to compute the merge of an includes
list with only a minimal amount of changes. Let p = (== |(p1|p2)). First, in
step 2, instead of trying to merge p1 only to the first element of the source, all
source elements must be considered. Every source element that merges with p1

now leads to a case similar to 2(a). The computation of the union of the re-
sults for these cases is somewhat more complicated and requires some additional
bookkeeping. If no source element merges with the first pattern element then
this leads to a case similar to 2(b). G′

2 is now computed as

G′
2 = g((== |p2), s, B)

i.e. the includes operator must be propagated. Merging an includes list also
always terminates for the same reasons as why the merging of simple expressions
terminates.

The permutation operator. Merging a permutation pattern p=(==p e1...en)
is similar to simple merging except that the order of elements in the source is
arbitrary. As in the case of the includes operator, this requires that in step 2 all
elements in the source are considered instead of only the first. A more easy but
possibly less efficient implementation would be to merge the pattern as if it is
an includes pattern and only keep those results that are of the same length as
the original pattern (without the permutation operator.)
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The includes uniquely operator. The includes uniquely operator can be
used to block merging. Consider for example the patterns

p1 = ((?unit (form (== (string ?unit "car"))
(syn-cat (== (number singular))))))

and
p2 = ((?unit (form (==1 (string ?unit "car"))

(syn-cat (==1 (number singular))))))
and the source

s = ((unit (form ((string unit "cars")))
(syn-cat ((number plural))))).

The source represents (part of) a syntactic structure. The patterns represent
template-poles that are tried to merge with the source to obtain a new syntactic
structure. In this case both patterns are intended to fail because a unit cannot
be both singular (as specified by the patterns) and plural (as specified in the
source.) However, merging p1 and s results in

g(p1, s, ε) = {(((unit (form ((string unit "car")
(string unit "cars")))

(syn-cat ((number singular)
(number plural))))), {[?unit/unit]})}

whereas p2 and s do not merge: the merging is blocked by the includes uniquely
operator. An includes uniquely pattern can be merged with a source by first
treating the pattern as a normal includes pattern and then filtering the result
on the conditions of section 4.5. This can be made more efficient by checking
whether it is allowed to add a new element to the source in step 2(b) of the
merging algorithm.

7 Merging Feature Structures

As with unification, the merging of a pattern feature structure P with a source
structure S will be defined as merging a transformed pattern P ′ with the source.
The transformation consists of adding special operators to the pattern. However,
the set of special operators defined so far does not suffice. Consider the merging
of the pattern:

((?unit (sem-cat (== (agent ?e ?a) (human ?a))))),

with the following source:

((unit (sem-cat ((agent e a) (motion-event e))))).

The intended result with bindings [?e/e, ?a/a] is clearly:

((unit (sem-cat ((agent e a) (motion-event e) (human a))))).
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This solution requires that the first includes element is unified with the first
source element and that the human part is added. However, the first includes
element also merges with the second source element by adding agent to it,
leading to the solution:

((unit (sem-cat ((agent e a) (agent motion-event e)
(human e))))),

with bindings [?e/motion-event, ?a/e]. In this particular case the spurious so-
lution can be ruled out by changing the includes operator == to an includes
uniquely operator ==1. However, this is not always possible, and some more
general mechanism is needed that allows to specify that feature values like
(motion-event e) may not be modified during merging. Therefore, for every
special operator o ∈ O a non-destructive version o! is defined which behaves the
same in unification (i.e. fo=fo!) but which differs in merging such that the modi-
fication of candidate source elements for an element of a non-destructive pattern
is prohibited. In terms of the merge algorithm g in section 6.1 this means that
the recursive call to g in step 2 to determine G′

1 is replaced by a call to ffcg
and that steps 2(b) and step 3 are not allowed because they modify the source.
By using non-destructive special operators the modification of already present
feature value elements can be prohibited. However, there is another problem.
Consider the merging of the pattern

(==1 (unit1 ==1 (F1 V1))
(unit2 ==1 (F2 V2))),

with the source

((unit1)
(unit2)))

One expected result is

((unit1 (F1 V1))
(unit2 (F2 V2))).

However, the following is also a valid merge:

((unit1 unit2 (F1 V1))
(unit2 unit1 (F2 V2))).

Prohibiting this solution requires the introduction of a final special operator
==1l which is equivalent to the includes uniquely operator except that it only
allows its elements to be lists.
Definition 15. The function expand-structure(P,S,B) which takes a pattern
structure P , a source structure S and a set of bindings B is defined as follows.
If P is as represented in (5) then the pattern is first transformed to the pattern
P ′:

(==1l (u1 ==1l (f11 v′11)...(f1n1 v′1n1
))

...

(um ==1l (fm1 v′m1)...(fmnm v′mnm
))), (9)
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with the new feature values determined as follows: Every non-atomic feature
value vij = (v1|v2) in the pattern for which v1 is not a special operator is replaced
by v′ij = (==!p|vij). If v1 is a special operator then it is replaced by its non-
destructive version. Atomic feature values are left unchanged: v′ij = vij if vij is
atomic. Expand-structures(P,S,B) is then equal to g(P ′, S, {B}).

8 Examples

The examples presented in this section are simplified to focus on the unification
and merging aspects of fcg-template application and do not take the J-operator
into account.

8.1 Example of Syntactic Categorisation in Parsing

Assume the following syntactic structure, which could be built based on the
utterance “Mary walks”:

Syn=((sentence-unit (syn-subunits (Mary-unit walks-unit)))
(Mary-unit (form ((string Mary-unit "Mary"))))
(walks-unit (form ((string walks-unit "walks")))))

The structure contains three units: one for both words (‘strings’) in the sentence,
and one to keep these together in a sentence unit. The initial corresponding
semantic structure might look like:

Sem=((sentence-unit (sem-subunits (Mary-unit walks-unit)))
(Mary-unit)
(walks-unit))

It does not yet contain any meanings because we are in the beginning of the pars-
ing process before application of the lexical templates. As explained elsewhere,
the first type of template that is applied during parsing in fcg is concerned
with morpho-syntactic transformations and syntactic and semantic categorisa-
tions. In parsing, this phase is comparable to more traditional part-of-speech
tagging. However, in fcg these templates can be applied both during produc-
tion and in parsing and the set of form-constraints and syntactic categories (like
parts of speech) is open-ended. The following template categorises the string
“walks” as the third-person singular form of the verb-stem “walk”:

((?unit (form (== (stem ?unit "walk")))
(syn-cat (==1 (number singular)

(person third)))))
<-->
((?unit (form (== (string ?unit "walks")))))

While producing, the same rule would be applied to establish the third-person
singular form “walks” for the stem “walk”. To test the applicability of the above
template while parsing, the right pole must be unified with the syntactic struc-
ture. As explained earlier, this requires first the transformation of the pole to
the pattern R′ (see equation 6):
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R’=(==1 (?unit ==1 (form (== (string ?unit "walks"))))),

followed by the unification of this new pattern with the syntactic structure:

B = ffcg(R′, Syn, {ε}) = {[?unit/walks-unit]}

Because this yields a valid set of bindings, the template’s left pole can be applied
to compute a new, extended syntactic structure Syn’ (syntactic categorisation
rules always work only on syntactic structures). This requires that the template’s
left pole is merged with the syntactic structure. Therefore, it is first transformed
to the pattern L′ (see equation 9):

L’= (==1l (?unit ==1l (form (==! (stem ?unit "walk") ))
(syn-cat (==1! (number singular)

(person third))))),

which then is merged with the syntactic structure: g(L′, Syn,B) = {(Syn′,B)},
yielding:

Syn’=((sentence-unit (syn-subunits (Mary-unit walks-unit)))
(Mary-unit (form ((string Mary-unit "Mary"))))
(walks-unit (form ((string walks-unit "walks")

(stem walks-unit "walk")))
(syn-cat ((number singular)

(person third))))).

8.2 Example of Lexicon Lookup in Parsing

Here is next a lexical template associating a predicate-argument structure with
the stem “walk”:

((?unit (referent ?event)
(meaning (== (walk ?event) (walker ?event ?person)))))

<-->
((?unit (form (== (stem ?unit "walk")))))

In parsing, this template is triggered by a successful unification of its right
pole with the syntactic structure. Therefore, the pole is first transformed to the
pattern R′′:

R’’=(==1 (?unit ==1 (form (== (stem ?unit "walk"))))).

It is easy to see that R′′ indeed unifies with the syntactic structure Syn’ from
the previous example with unifier B′=[?unit/walks-unit]. Given successful uni-
fication, the left pole can be merged with the semantic structure, yielding the
new semantic structure Sem’, with g(L′′, Sem, {B′}) = {(Sem′, {B′})},

L’’=(==1l (?unit ==1l (meaning (==! (walk ?event)
(walker ?event ?person)))))
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and thus

Sem’=((sentence-unit (sem-subunits (Mary-unit walks-unit)))
(Mary-unit)
(walks-unit (referent ?event)

(meaning ((walk ?event)
(walker ?event ?person))))).

8.3 Example of Construction Application in Production

Assume that conceptualization, lexicalisation and categorisation resulted in the
following semantic and syntactic structures:

Sem=((sentence-unit (sem-subunits (Mary-unit walk-unit)))
(Mary-unit (referent person-1)

(meaning ((Mary person-1))))
(walk-unit (referent ev-1)

(meaning (walk ev-1)
(walker ev-1 person-1))

(sem-cat (motion-event ev-1)
(agent ev-1 person-1))))

and

Syn=((sentence-unit (syn-subunits (Mary-unit walk-unit)))
(Mary-unit (form ((stem Mary-unit "Mary")))

(syn-cat ((person third)
(number singular))))

(walk-unit (form ((strem walk-unit "walk"))))).

The above syntactic structure specifies that there are two lexical items involved
(the stems “Mary” and “walk”), reflecting the fact that the meaning to express
involves some person person-1 (Mary) and some walk event ev-1. However it
is not yet specified that it is Mary who fulfills the role of walker (agent) in the
walk event. The following simple SV-construction template can be used for this
and uses word order and agreement as would be the case in English:

((?SV-unit (sem-subunits (?subject-unit ?predicate-unit)))
(?subject-unit (referent ?s))
(?predicate-unit (referent ?p)

(sem-cat (==1 (agent ?p ?s)))))
<-->
((?SV-unit (syn-subunits (?subject-unit ?predicate-unit))

(form (== (precedes ?subject-unit ?predicate-unit))))
(?subject-unit (syn-cat (==1 NP

(number ?n)
(person ?p))))

(?predicate-unit (syn-cat (==1 verb
(number ?n)
(person ?p))))).
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Many other syntactic constraints can easily be incorporated into this kind of
template. The above template’s left pole unifies with the semantic structure Sem
with unifier

B=[?SV-unit/sentence-unit, ?subject-unit/Mary-unit,
?predicate-unit/walk-unit, ?s/person-1, ?p/event-1].

Thus, a new syntactic structure Syn’ can be computed by merging the tem-
plate’s right pole with the structure Syn: g(R′, Syn, {B}) = {(Syn′, {B′})}, with

R’=(==1l
(?SV-unit ==1l

(syn-subunits (==p! ?subject-unit ?predicate-unit))
(form (==! (precedes ?subject-unit ?predicate-unit))))

(?subject-unit
==1l
(syn-cat (==1! NP

(number ?n)
(person ?p))))

(?predicate-unit
==1l
(syn-cat (==1! verb

(number ?n)
(person ?p))))),

B’=[?SV-unit/sentence-unit, ?subject-unit/Mary-unit,
?predicate-unit/walk-unit, ?s/person-1, ?p/event-1,
?n/singular, ?p/third]

and

Syn’=((sentence-unit
(syn-subunits (Mary-unit walk-unit))
(form ((precedes Mary-unit walk-unit))))

(Mary-unit (form ((stem Mary-unit "Mary")))
(syn-cat (NP

(person third)
(number singular))))

(walk-unit (form ((strem walk-unit "walk")))
(syn-cat (verb

(person third)
(number singular)))))

9 Conclusion

Experiments in the emergence of grammatical languages require powerful for-
malisms that support the kind of features that are typically found in human
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natural languages. Linguists have been making various proposals about the na-
ture of these formalisms. Even though a clear consensus is lacking, most for-
malisms today use a kind of feature structure representation for syntactic and
semantic information and templates with variables and syntactic and seman-
tic categories. There are also several proposals on how templates are to be as-
sembled, centering around concepts like match, unify, merge, etc. although the
proposals are often too vague to be operationalised computationally. We argued
that computer simulations of the emergence of grammar have some additional
technically very challenging requirements: the set of linguistic categories must be
open-ended, templates can have various degrees of entrenchment, and inventories
and processing must be distributable in a multi-agent population with poten-
tially very diverse inventories. Fluid Construction Grammar has been designed
to satisfy these various requirements and the system is now fully operational
and has already been used in a number of experiments. In this document the
unification and merging algorithms used in fcg were formally defined as they
form the core of the system. It was shown that fcg unification is a special
type of multi-subset-unification, which is inherently of exponential complexity
in the length of the expressions that are unified. Fcg unification always returns
a complete but not necessarily minimal set of unifiers. Fcg merging was prop-
erly defined and it was shown that it always terminates. The unification of a
source with an includes list (==) was formally defined and the unification of a
permutation list (==p) and of an includes-uniquely list (==1) were shown to be
special cases hereof. These made it possible to define the matching of structures,
needed for fcg template application in terms of the general unification function.
Non-destructive versions of these operators were introduced to enable the defi-
nition of fcg structure merging in terms of the general merging function. FCG
can be used without considering all the technicalities discussed in the present
paper, but these details are nevertheless of great importance when constructing
new implementations.

Acknowledgment

The research reported here has been conducted at the Artificial Intelligence
Laboratory of the Vrije Universiteit Brussel (VUB) and at the Sony Computer
Science Laboratory in Paris. Joachim De Beule was funded as a teaching as-
sistant at the VUB. Additional funding for the Sony CSL activities has come
from the EU FET-ECAgents project 1170. Many other researchers have been
important in shaping FCG. We are particularly indebted to Nicolas Neubauer
for early work on the unification and merge algorithms, Josefina Sierra for an
early re-implementation in Prolog, and to Martin Loetzsch for recent contri-
butions towards making FCG a more professional software engineered artifact.
Other contributions have come from Benjamin Bergen, Joris Bleys, Remi Van
Trijp, and Pieter Wellens.



222 L. Steels and J. De Beule

References

1. Batali, J. (2002) The negotiation and acquisition of recursive grammars as a re-
sult of competition among exemplars. In Ted Briscoe, editor, Linguistic Evolution
through Language Acquisition: Formal and Computational Models. Cambridge
University Press.

2. Bergen, B.K. and Chang, N.C.: Embodied Construction Grammar in Simulation-
Based Language Understanding. In: Ostman, J.O. and Fried, M. (eds): Construc-
tion Grammar(s): Cognitive and Cross-Language Dimensions. John Benjamins
Publishing Company, Amsterdam (2003)

3. Briscoe, T. (ed.) (2002) Linguistic Evolution through Language Acquisition: For-
mal and Computational Models. Cambridge University Press, Cambridge, UK.

4. Cangelosi, A. and D. Parisi (eds.) (2001) Simulating the Evolution of Language.
Springer-Verlag, Berlin.

5. Chomsky, N.: Logical Structure of Linguistic Theory. Plenum (1955)
6. Croft, William A. (2001). Radical Construction Grammar; Syntactic Theory in

Typological Perspective. Oxford: Oxford University Press.
7. De Beule, J. and B. Bergen (2006) On the emergence of compositionality.Accepted

for the Sixth Evolution of Language Conference, Rome, 2006
8. De Beule, J. and Steels, L. (2005) Hierarchy in Fluid Construction Grammar. In

Furbach U., editor, Proceedings of KI-2005, pages 1–15. Berlin: Springer-Verlag.
9. Degyarev, A., Voronkov, A.: Equality Elimination for Semantic Tableaux. Tech. re-

port 90, Computer Science department, Uppsala University, Upsalla, Sweden
(1994)

10. Dovier, A., Pontelli, E., Rossi, G.: Set Unification. arXiv:cs.LO/0110023v1 (2001)
11. Goldberg, A.E. (1995) Constructions: A construction grammar approach to argu-

ment structure. University of Chicago Press, Chicago.
12. Hashimoto, T. and Ikegami, T. (1996) Emergence of net-grammar in communicat-

ing agents. Biosystems, 38(1):1–14.
13. Hagoort, P.: On Broca, brain and binding: a new framework. Trends in Cognitive

Science 9(9) (2005) 416–423
14. Jackendoff, R.: Foundations of Language: Brain, Meaning, Grammar, Evolution.

Oxford University Press (2002)
15. Kay, M.: Functional unification grammar: A formalism for machine translation.

Proceedings of the International Conference of Computational Linguistics (1984)
16. Kapur, D. and Narendran, P.: NP-completeness of the set-unification and matching

problems. In: Proceedings of the Eighth International Conference on Automated
Deduction. Springer Verlag, Lecture Notes in Computer Science 230 (1986) 289–
495

17. Langacker, R.W. (2000) Grammar and Conceptualization. Mouton de Gruyter,
Den Haag.

18. Minett, J. W. and Wang, W. S-Y. (2005) Language Acquisition, Change and Emer-
gence: Essays in Evolutionary Linguistics. City University of Hong Kong Press:
Hong Kong.

19. Pollard, C. and Sag, I.: Head-driven phrase structure grammar. University of
Chicago Press (1994)

20. Russell S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edition.
Upper Saddle River, New Jersey 07458, Prentice Hall, Inc. (2003)
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Abstract. The inflection of words based on agreement, such as number,
gender and case, is considered to contribute to clarify the dependency
between words in a sentence. Our purpose in this study is to investigate
the efficiency of word inflections with HPSG (Head–driven Phrase Struc-
ture Grammar), which is able to deal with these features directly. Using
a notion of utility, we measure the efficiency of a grammar in terms of the
balance between the number of semantic structures of a sentence, and
the cost of agreement according to the number of unification processes.
In our experiments, we showed how these were balanced in two different
corpora. One, WSJ (Wall Street Journal), includes long and complicated
sentences, while the other corpus, ATIS (Air Travel Information System)
does shorter colloquial sentences. In the both corpora, agreement is surely
important to reduce ambiguity. However, the importance of agreement
in the ATIS corpus became salient as personal pronouns were so often
employed in it, compared with the WSJ corpus.

1 Introduction

Grammatical rules of human language enable us to generate an infinite range
of expressions. Because a long sentence may contain ambiguities in its meaning,
language is equipped with devices to indicate dependency. Among them, we
consider the function of agreement.

Types of agreement such as number, gender, and case change word forms by
inflection or agglutination of prefix/suffix. Inflection is a grammatical affix that
attaches to a word to mark it as a particular part of speech [3], in English, for
example, the use of -ed to make the word show into the past tense form showed,
and the use of -s to make the word actor into the plural actors. Agglutination is
to combine words with sets of stable affixes to produce complicated phrases like
judgemental or helplessness in English. In technical terms, the case change of
nouns or adjectives is called declension, and words are classified into declinable
ones and other indeclinable ones, while verb inflection is called conjugation [1].
Among we said above, those words which are often used in daily expressions,
such as, I, my, me, mine, or irregular verbs tend to totally change their forms.
However, these irregular inflections are an obvious barrier for language learners
such as toddlers and foreigners.

P. Vogt et al. (Eds.): EELC 2006, LNAI 4211, pp. 224–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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These types of agreement are considered to assist to identify or reidentify ref-
erents [2]. The languages with rich inflectional systems often allow more freedom
in word order, while those which only have few inflectional systems such as mod-
ern English requires strict word order instead [3,6]. This relationship between
word order and agreement is one of the sign to represent characteristics of lan-
guages. Because these grammatical features are considered to be diachronically
developed, studying languages through the aspect of agreement and word order
may contribute to the field of language evolution.

Kirby’s model [8], claimed that human beings had a skill to develop and
create grammars spontaneously for compositionality and recursion. Consider-
ing these two functions, we presume that we can generate an infinite variety
of expressions. However, his model seems rather to have neglected the aspect
of understanding. Such a free proliferation of language may decrease the com-
municability, if we can generate long and complicated sentences, then they
inevitably include ambiguities. Thus, we contend that a grammatical feature
which decreases ambiguity such as agreement should also contribute to devel-
oping spontaneity. Our work is based also on Jäger [7], who has used the no-
tion of utility to describe the efficiency of language generation. We will uti-
lize this notion, and define our own utility function later. In our study, we
bring HPSG (Head–driven Phrase Structure Grammar) which is indebted to
a wide range of research traditions in syntax, like categorial grammar, general-
ized phrase structure grammar, lexical–functional grammar etc. Compared with
other grammars dealing with phenomena of language evolution [4,12], HPSG is
simple enough to handle our experiment. Because in HPSG every part of speech,
category, and partial tree is represented by feature structures or DAG’s (di-
rected acyclic graphs), we can embed the restrictions on agreement in grammar
formalisms.

In this study, we scramble the word order of sentences artificially, and measure
how they become ambiguous. For this purpose, (i) we define a utility function,
the value of which is higher if the meaning is less ambiguous with less effort.
(ii) Next, we show the difference of utility values between inflectional and non-
inflectional languages. We expect that inflectional language will have less ambi-
guity, though it will cost more in the parsing process. We show the value of the
utility against the ratio of randomization of word order. (iii) Then, we compare
two sample corpora. One is ATIS which consists of rather simple short sentences.
The other is WSJ, which includes many complicated sentences. We hypothesize
that in ATIS the non-inflectional language will suffice for communication and
show high values in the utility, while in WSJ the inflectional one will show high
values.

This paper is organized as follows: in Section 2 we explain the mechanism of
HPSG and a programming language which we use to build our system. Section
3 presents the details of our experimental model, as well as the explanation of
the utility function. We show our experimental results in Section 4, and Section
5 summarizes this study and outlines the further work.
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2 HPSG and Parser

2.1 Briefing HPSG

Feature structure, Type, and Head. In HPSG, each word and phrase is
not a single symbol but a set of feature–value pairs called a feature structure.
A feature structure is a directed graph, in which all the nodes and edges have
associated names. The name associated with a node is called type and the name
associated with an edge is called feature. The types of edges or attributes that
can be associated with a node are determined uniquely by the type. In case
the feature takes multiple candidates as its value, it is represented by a list
‘ 〈 . . . 〉’.

In Fig. 1, we illustrate a parsed tree of ‘A man walks.’ Note that each node of
the tree is a feature structure; because the value of feature NUM is fixed as ‘3sg’
(third person, singular), feature structures with different NUM values cannot be
accepted to form a tree.

We metaphorically call the upper node a mother and the lower one a daugh-
ter in a tree structure. In a verb phrase or a noun phrase, we can find the
prime daughter who mainly decided the features of her mother, that is, a verb
and a noun, called head.1 In Fig. 1, the head of the phrase ‘A man’ is a noun
‘man.’

In HPSG, various categories are classified into types. Each category, that is a
feature structure, owns a type and it is usually placed at the top of the whole
structure, headed by ‘˜’ (tilde).2 The upper type inherits the features of all the
lower types, and thus, all the types form a type-hierarchy. We use ‘�’ for the
subsumption relation in types. The feature structure of type a of a � b is a subset
of the structure of type b. The bottom type (⊥) is the most general type with
no features.

Heads are often represented by a bar ‘ ’ over the type labels. Because the type
of ‘man’ is N , that of ‘a man’ becomes N . Similarly, the head of a verb phrase V
is a verb V , and because the whole sentence can be considered to be formed by a
verb phrase, the type of the sentence becomes V . The process in which a head is
combined with other daughters into a mother is called a subcategorization, such
that ‘man’ (N) takes an article ‘A’ to N , or ‘walks’ (V ) takes ‘A man’ (N). As in
Fig. 1, a type requires other types specified in SUBCAT feature to be a mother
structure.

ID-schemata and Principles. The grammar rules of HPSG consist of ID-
schemata and principles. An ID-schema corresponds to a generation rule of
Context–Free Grammar (CFG), viz., the left-hand side of ‘→’ is a mother cate-
gory and the right-hand side is daughter categories. The feature HEAD contains
the structures of the head feature and DTRS (daughters) contains the structures

1 Some linguists define that the head of a noun phrase is a determiner because without
it a noun cannot be a phrase, but the discussion is out of the scope of this paper.

2 In this paper, we may omit type labels unless they are necessary.
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NUM 3sg
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�
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�
� ˜V
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�
˜V
NUM 3sg

�

walks

Fig. 1. A tree structure of a natural language sentence

of HEAD-DTR and COMP-DTR (complement daughter). Consecutive feature
names delimited by ‘|’ access the value of the last feature.3

A pointer indexed by ‘ i ’ points to another structure headed by the same
label, and denotes that the labeled structure is shared. The operation which
merges multiple feature structures into one, without losing consistency, is called
unification. This is utilized when looking up lexicons and grammar rule applica-
tions.

Principles are the constraints which all the feature structures must satisfy
a priori. For example, Head Feature Principle, shown in Eqn (1), declares that
both mother HEAD features and those of daughters must be common.

�
||HEAD 1

DTRS|HEAD-DTR
�

||HEAD 1
�
�

(1)

Subcategorization Principle, shown in Eqn (2), limits the mother SUBCAT
feature to the list of all the daughter SUBCAT features minus those which are
already subcategorized.

�
��

||SUBCAT 〈 2 〉

DTRS

�
��HEAD-DTR

�
||SUBCAT 〈 1 , 2 〉

�

COMP-DTRS 1

�
��

�
	� (2)

The parsing process of HPSG is to acquire the mother feature structure,
filling out its initially vacant HEAD-DTR and COMP-DTRS features, taking
two other structures, with ID-schemata and principles. Although the order of
this composition is not specified, the possible combinations are limited by the
given initial set of structures.

3 Hereafter, we abbreviate the description of consecutive feature names. ‘|’ denotes
that several feature names which are located the left side of two vertical bars are
omitted.
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2.2 LiLFeS and UP Parser

LiLFeS4 is a programming language that processes linguistic formalisms, de-
veloped at University of Tokyo [9]. It is similar to Prolog in that its syntax
includes disjunction, negation, and cut. The library of the language has been
well developed, and we can utilize such functions as copying of feature struc-
tures, multi-dimensional arrays, regular expressions, and so on. Thus, LiLFeS is
well suited to implement HPSG.

The UP parser which is written in LiLFeS is included in the MAYZ toolkit5.
It analyzes a sentence according to a unification–based grammar, e.g., HPSG.
Users can give the target sentence as a string or a word lattice to the parser.

Using these two tools, we implemented our HPSG parser which enables us to
derive Predicate-Argument Structures (PASs) not only from ordinary English
sentences but also from artificial ones with scrambled word order.

3 Utility Investigation Model

3.1 Word Order Variation

In this section, we introduce the methods to represent scrambling in HPSG [5].
In Japanese, for example, beside the standard subject–object–verb (SOV) order,
the object–subject–verb (OSV) order is admissible as below, both of which give
the same meaning as “Ken loves Naomi.”

Ken–ga (NOM) Naomi–wo (ACC) aisiteiru (verb).
Naomi–wo (ACC) Ken–ga (NOM) aisiteiru (verb).

The syntactical structures of the above two sentences are composed using
SLASH feature. Briefly, if a category contains the SLASH feature it dominates
a gap (missing constituent). To help readers identify the location of the gaps,
we mark them with an underlined space in the following example sentences.

What did you say they handed to the baby?
The presents that it annoys me that the children discover . . .

The gap in the phrase “hand to the baby” from which an NP is absent is repre-
sented as [SLASH <NP>], as in Fig. 2 [11].

In this paper, because we basically deal with English grammar, we adopt this
SLASH feature to represent word migration. Using the SLASH feature, a verb,
“love,” is represented in Fig. 3.

The languages of the Latin family such as Italian and Spanish apply the rule of
the left-hand side of Fig. 3 when an object of a verb is a pronoun. The Germanic
languages whose word order is called SOV-V2 such as German and Netherlandic

4 http://www-tsujii.is.s.u-tokyo.ac.jp/lilfes/
5 http://www-tsujii.is.s.u-tokyo.ac.jp/mayz/
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V

hand

PP

to the baby

Fig. 2. Example of handing SLASH feature in HPSG

Subj

Obj

love ∅Obj

Obj

Subj

love ∅Obj

Fig. 3. Lexical item of “love” for the scrambled expression

apply this rule. The rule of the right-hand side of Fig. 3, long distance depen-
dency, is applied to question forms and relative clauses of English. According to
these migrating rules, a sentence “Subj loves Obj” may change to “Obj Subj
loves” or “Subj Obj loves”, but may not change to “loves Subj Obj” or “loves
Obj Subj’.’

3.2 Parsing Process of Scrambled Sentences

We explain the characteristics of our parser, shown in Fig. 4, which is an ex-
ample of a parsed tree after scrambling of “she loves me” in HPSG. In this
figure, nom, acc, HSS, HCS, HFS are the abbreviations of nominative (Sub-
ject), accusative (Object), head–subject schema, head–complement schema, and
head–filler schema, respectively. These schemata are explained as follows:

Head-complement schema. This schema is for a verb phrase to take a com-
plement. Only those words, the category of which has been specified in SUB-
CAT, can be unified to the verb phrase.

Head-subject schema. This schema is for a verb phrase to take a subject.
The subject candidate can be applied to the schema only when the verb
phrase has satisfied all the complements.

Head-filler schema. This schema is for a relative clause, and wh–question.
Only a word which is categorized as SLASH can be unified as a complement.

With the rule of the right-hand side of Fig. 3, the sentence is parsed as in
Fig. 4(a) by the SLASH feature. The verb “loves” in which the first argument
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Fig. 4. Tree structures of a scrambled sentence “me she loves”

of the SUBCAT is a nominative noun requires the noun “she” whose case is
nominative by HSS. Because the SUBCAT of the verb phrase “she loves” is an
accusative noun, the parser applies HFS to the accusative noun “me”.

In Fig. 4(b) shows the example of ignoring agreement. The information of
the SUBCAT of the verb “loves” lacks the information on case. Therefore, the
parser cannot figure out whether the noun “she” is the subject or the object of
the verb. At this time, Using HCS, the verb phrase “she loves” is constructed.
The SUBCAT of the verb phrase “she loves” is the noun, and the only remaining
noun is “me”; this verb phrase does not have a subject yet, thus with HSS this
verb phrase subcategorizes a noun “me”.

The output of this parser is a Predicate–Argument Structure (PAS), that is
one of the characteristics of HPSG. Figure 5 shows the outputs of parsing depen-
dent upon the agreement features. “Pred (argument1, argument2)” means that
“argument1 Pred argument2”. For the parsing result with the agreement features
in Fig. 4(a), we can figure out what this sentence means without any ambiguity,
though the sentence is scrambled. However, the result of Fig. 4(b), in which the
grammar does not consider agreement features such as CASE and NUM, shows
that we cannot figure out the meaning either “me loves she” (meaning “I love
her”) or “she loves me.”

3.3 Experimented Procedure

In this section, we explain the procedure of our experiment (see Fig. 6). Due to
defects of the grammar set of our parser, not all the sentences in the corpora can
be parsed. Therefore, first, we extract only those sentences which can be parsed.
Next, we scramble the word order of the parsed sentences, and embed them
into each original corpus at the rate of 0 % to 100%. Then, we parse them with
our HPSG parser which tolerates scrambled sentences. Also using a function of
LiLFeS which can ignore arbitrary features, we parse the sentences disregarding
agreement.
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love ( she , I )
love ( I , she )

PAS:

PAS:
love ( she , I )‘‘me she loves’’

Input Sentence:

Parsing with
agreement feature

Parsing without
agreement feature

Fig. 5. Outputs of parsing depend on agreement

Corpus Plain

Scrambling
(0%~100%)

Mixed Set with 
Scrambled Sentences

‘‘she loves me’’ ‘‘me she loves’’

(2) Scrambling(1) Extraction

Set of Sentences

Fig. 6. Procedure of experiment

Finally, using these outputs, we calculate a value of the utility to evaluate
grammars with regard to the balance between word order and the cost of unifi-
cation.

3.4 Utility

In our model, based on the utility formula of Jäger’s research [7], we propose a
utility function for a sentence, U , such that:

U =
N

|PAS| − w · C(unif), (3)

where |PAS|, N , C(unif), and w are the number of predicate argument struc-
tures extracted from the sentence, the word length of the sentence, the number of
unifications for the agreement feature, and the weight for C(unif), respectively.

As the number of PASs represents ambiguity, the first term of (3) indicates
profit. The less ambiguous the sentence is, the higher the value of the first term is.
The second term of (3) indicates cost of unification. In Fig. 4(a), for example, the
number of unification of agreement is four times, while the number of unification
of agreement in Fig. 4(b) is zero. The low value of this second term means that
the sentence is parsed more efficiently. The weight w is a positive coefficient by
which the priority of the second term is assessed.
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4 Experiment and Result

In this section, we show our experimental results, based on the model in the
previous section. The purpose of this experiment is to observe the utility value
against the proportion of the scrambled sentences. In our experiment, we set the
weight in Eqn (3) to w = 0 and 0.1.

We apply our system to two corpora recorded in the Penn Tree Bank; one
is the Wall Street Journal (WSJ, hereafter), and the other is the Air Ticket
Information Service (ATIS). These corpora contrast with each other; while the
WSJ includes many grammatically complicated sentences, the ATIS consists of
comparatively short and simple sentences. We extracted 5,856 sentences out of
the WSJ corpus. After artificially scrambling them, we have generated 4,390
sentences. In the similar way, we have employed 210 sentences out of the ATIS
corpus. From each of these sets of sentences, we randomly sample 10,000 sen-
tences with replacement, and calculate their value of the utility. We have parsed
these word-free sentences with four different grammars, considering the require-
ments of agreement as to person/number and case marking. The semantics of a
sentence is shown as a PAS in HPSG. If a sentence is multiply parsed, we obtain
multiple PASs and thus the sentence is ambiguous.

We show the results of the WSJ and the ATIS in Fig. 7 and Fig. 8, respectively.
Figure 7(a) is the result of the WSJ at w = 0, and Fig. 7(b) at w = 0.1. The
same holds for Fig. 8. The horizontal axis denotes the mixture ratio of scrambled
sentences, and the vertical axis is the average of utility. The solid line tagged by
PERNUM&CASE shows the grammar in agreement both with person/number
and case marking, the long dashed line by CASE denotes the one regarding
only case, the short dashed line by PERNUM regarding only person/number,
and the dotted line by NONE is the grammar disregarding agreement. The
chain line tagged by Difference denotes the difference of the utility between
PERNUM&CASE and NONE. All these lines include spline interpolation.

As we can see in Fig. 7and Fig. 8, the more the mixture ratio of scrambled
sentences increases, the more the utility values decrease. According to Eqn (3),
the profit term is inversely proportional to the number of PASs, which implies the
degree of ambiguity for a sentence. Because, in most cases, scrambled sentences
are more difficult to identify a nominative and an accusative of a verb than
normal sentences with strict word order of English, the average number of PASs
for the scrambled sentences is greater than that of the normal ones. As a result,
the increase of scrambled sentences simply makes the average of utility low.

Here, we focus on Fig. 7(a). The weight in Eqn (3) is set to w = 0, which
means that language users do not care the cost of agreement. The utility value
of PERNUM&CASE is the highest over all the mixture ratio of scrambled sen-
tences, while that of NONE is the lowest. Because the grammatical features
such as agreement with person/number and case marking are considered to con-
tribute to identify referents, the grammar using them reduces the number of
PASs. The figure represents the effect of these grammatical features in the or-
der of agreement with person/number and case marking (PERNUM&CASE ),
only person/number (PERNUM ), and only case marking (CASE ). Because the
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Fig. 7. Utility and the ratio of scrambled sentences: WSJ
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frequency of unification processes for agreement with person/number was 14.7
times as much as that of case marking, the grammatical feature for agreement
with person/number is considered to be more efficient than that of case marking.
We can see that the more the mixture ratio increases, the greater the difference
between PERNUM&CASE and NONE is. Thus, the use of these features for
scrambled sentences is more effective in the reduction of ambiguity. It is consis-
tent with the fact that the languages with rich inflectional systems often allow
more freedom in word order.

Figure 7(b) shows the result of the WSJ at w = 0.1. In this situation, language
users are annoyed by taking agreement. Therefore, the utility value of PER-
NUM&CASE becomes close to that of NONE, and when w = 0.2, it eventually
becomes worse than NONE. Second language learners may not be accustomed
to dealing with agreement, i.e., in their case, the weight of cost becomes large.
This means that the grammar disregarding agreement brings them a high value
of the utility.

We show the result of the ATIS at w = 0 in Fig. 8(a). Although the order
of the utility values for each grammatical feature is the same as the WSJ, it
is entirely higher than that of the WSJ. Compared with the WSJ as written
English sentences, the corpus of the ATIS as colloquial sentences contains many
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of shorter sentences. Because long sentences tend to own the vast amount of
ambiguous expressions, the average utility value of the WSJ is likely to be less
than the ATIS. Despite the long sentences contain more complicated structures
in the PASs than shorter ones, we do not consider the complexity of PASs in a
sentence in the definition of the utility in Eqn (3). Hence, the word length of a
sentence is properly not reflected in the definition of the utility.

Paying attention to the difference of the utility between PERNUM&CASE
and NONE, we can observe the increase rate of the difference against the mixture
ratio of scrambled sentences is greater than that of the WSJ. In other words, the
grammatical features are more effective in scrambled sentences in the ATIS than
that in the WSJ. Because of a heavy usage of personal pronouns in the ATIS
corpus, the case marking is more important than in the WSJ. In fact, 28.1% of
the sentences contained personal pronouns in the ATIS while 10.9% in the WSJ.

We show the result of the ATIS at w = 0.1 in Fig. 8(b). When scrambled
sentences are rarely contained, the grammar with only person/number,that is
PERNUM, exceeds the one with both person/number and case marking, that
is PERNUM&CASE, in terms of the utility values. Similarly, the utility val-
ues of the grammar with case is below the one disregarding agreement. This
phenomenon comes from the unification cost for case marking. On the other
hand, because grammatical feature of case is important to the disambiguation
of scrambled sentences, the utility values for PERNUM&CASE and CASE are
still kept high, even if the mixture ratio of scrambled sentences increases.

5 Conclusion and Future Work

In this study, we have investigated the utility of word inflections based on agree-
ment, which can clarify dependency and can reduce the ambiguity. We have
measured the ambiguity by (a) the number of probable PASs, i.e., possible se-
mantic structures of a sentence, and (b) the cost of agreement by the number
of unification processes. We defined our utility function by (a)−(b) and showed
how these were balanced in two different corpora. One was the Wall Street Jour-
nal corpus which contains long and complicated sentences, in the other corpus,
Air Travel Information Service corpus which contains shorter sentences.

In the experiment, we prepared four types of grammar which are (i) the gram-
mar regarding person/number and case, (ii) only person/number, (iii) only case,
and (iv) disregarding all of them.

As a result, the more the mixture ratio of scrambled sentences increases,
the more the utility value decreases. Also, we have observed that the more the
mixture ratio increases, the greater the difference between the grammar with
agreement and the one without it. Because the word order is strict in English,
the grammar without agreement has shown higher utility than those with any
agreement. For those who are accustomed to dealing with agreement, Gram-
mar (i) showed the highest utility. On the other hand, for those who are not,
Grammar (iv) became efficient. The latter case may often happen in the second
language acquisition.
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Thus far, in many studies concerning language change and language evolution,
grammar has only been regarded as an abstract notion, as a virtual parameter
set of Universal Grammar. However, in this study, we actually wrote grammar
rules to investigate how each rule affects the features of language. We owe the
benefits of our experiment greatly to the adoption of HPSG, which is one of
the advanced style of grammar formalism, in that we could calculate the profit
by the number of PASs in the analysis of SLASH features, and the cost by
the number of feature unification. However, in this grammar, there are many
other features which we have not dealt with yet. Employing these features, we
will be able to analyze practical phenomena more precisely, also modeling in
the future.

In our system, understanding of a speaker’s utterance in actual situations
corresponds to deriving a unique PAS from the sentence. Our present rule–
based parser, however, does not disambiguate multiple PASs semantically, i.e.,
we do not determine a unique PAS from the multiple candidates. For solving
this problem, a stochastic parsing method is necessary. If the parser chose one
from the candidates, we could calculate a precision of the PASs against the cor-
rect answer, which is recorded in the corpora as parsed tree structures. Also,
in this study, we have not considered the complexity of PASs in a sentence
in the definition of the utility, even if a long sentence contains complicated
structures in the PASs than shorter ones. In the near future, we will develop
a stochastic system based on Enju6, which is a stochastic HPSG parser [10],
and then redefine a new utility including a precision and a term for complexity
of PASs.
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